Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Computed tomography (CT) is currently the imaging modality of choice for guiding pulmonary percutaneous procedures. The use of a tin filter allows low-energy photons to be absorbed which contribute little to image quality but increases the radiation dose that a patient receives. Iterative metal artefact reduction (iMAR) was developed to diminish metal artefacts. This study investigated the impact of using tin filtration combined with an iMAR algorithm on dose reduction and image quality in CT-guided lung biopsy.

Methods: Ninety-nine consecutive patients undergoing CT-guided lung biopsy were randomly assigned to routine-dose CT protocols (groups A and B; without and with iMAR, respectively) or tin filter CT protocols (groups C and D; without or with iMAR, respectively). Subjective image quality was analysed using a 5-point Likert scale. Objective image quality was assessed, and the noise, contrast-to-noise ratio, and figure of merit were compared among the four groups. Metal artefacts were quantified using CT number reduction and metal diameter blurring. The radiation doses, diagnostic performance, and complication rates were also estimated.

Results: The subjective image quality of the two scan types was compared. Images with iMAR reconstruction were superior to those without iMAR reconstruction (group A: 3.49±0.65 . group B: 4.63±0.57; P<0.001, and group C: 3.88±0.66 . group D: 4.82±0.39; P<0.001). Images taken with a tin filter were found to have a significantly higher figure-of-merit than those taken without a tin filter (group A: 14,041±7,230 . group C: 21,866±10,656; P=0.001, and group B: 13,836±6,849 . group D: 21,639±9,964; P=0.001). In terms of metal artefact reduction, tin filtration combined with iMAR showed the lowest CT number reduction (116.62±103.48 HU) and metal diameter blurring (0.85±0.30) among the protocols. The effective radiation dose in the tin filter groups was 73.2% lower than that in the routine-dose groups. The complication rate and diagnostic performance (sensitivity, specificity, and overall accuracy) did not differ significantly between the tin filter and routine-dose groups (all P>0.05).

Conclusions: Tin filtration combined with an iMAR algorithm may reduce the radiation dose compared to the routine-dose CT protocol, while maintaining comparable diagnostic accuracy and image quality and producing fewer metal artefacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739090PMC
http://dx.doi.org/10.21037/qims-21-555DOI Listing

Publication Analysis

Top Keywords

image quality
20
tin filter
12
iterative metal
8
metal artefact
8
artefact reduction
8
lung biopsy
8
metal artefacts
8
ct-guided lung
8
protocols groups
8
groups imar
8

Similar Publications

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

The Hidden Influence: Impacts of Residual Dimethylformamide in NDSB-211 on icIEF Separation for Monoclonal Antibodies.

Electrophoresis

September 2025

Therapeutics Development and Supply-Analytical Development, Janssen Research & Development, LLC, Malvern, Pennsylvania, USA.

Monoclonal antibodies (mAbs) present analytical challenges due to their inherent heterogeneity and susceptibility to post-translational modifications (PTMs) during production and storage. Monitoring of charge heterogeneity profiles by imaged capillary isoelectric focusing (icIEF) has been aided by the use of non-detergent sulfobetaines (NDSBs), particularly NDSB-211, to enhance protein solubility and stability. When used in a quality control laboratory setting, NDSB-211 has shown performance variability over time due to residual manufacturing impurities that impact the capillary isoelectric focusing separation.

View Article and Find Full Text PDF

This systematic review and meta-analysis examines the role of romantic attachment as a protective or risk factor in how individuals cope with infertility diagnosis, treatment, and outcomes. A systematic search was conducted across six databases from January 1, 2011, to February 3, 2025. Seventeen studies met inclusion criteria, exploring associations between romantic attachment and individual psychological correlates of infertility.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate whether low-dose CT imaging using an Sn filter can provide image quality sufficient for the differential diagnosis of cranial deformities in infants while maintaining an effective dose comparable to that of conventional radiography.

Methods: We calculated the effective dose for both head X-ray imaging and low-dose CT with an Sn filter. Phantom images acquired using a CT scanner equipped with an Sn filter were evaluated for bone suture visibility at various conditions (from 10 mAs to 50 mAs, every 10 mAs) using a 4-point visual grading scale.

View Article and Find Full Text PDF

Purpose: This study presents the dose-based intra-preplan (DIP) method for intracavitary/interstitial brachytherapy (IC/ISBT) in cervical cancer, optimizing catheter configurations based on dose distribution. This study aimed to assess the DIP method's clinical feasibility and efficacy.

Methods And Materials: The DIP method incorporates the implant modeling function and the hybrid inverse planning optimization algorithm in Oncentra Brachy.

View Article and Find Full Text PDF