Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Schizophyllan, a triple helical polysaccharide, exhibits cooperative order-disorder transition (CODT) in aqueous solutions. The transition transforms the ordered structure (triple helix I) formed between the branched side chains and solvent molecules into the disordered structure (triple helix II) without dissociation of the triple helix. The CODT behaviors in HO-imidazole mixtures containing HCl with different molar ratios of imidazole/HCl were investigated by adiabatic calorimetry and differential scanning calorimetry on two schizophyllan solutions with different molar masses. The transition temperature () and the transition enthalpy (Δ) significantly depended on both of the mole fractions of imidazole and imidazole/HCl. The composition dependences of and Δ in HO-imidazole mixtures were analyzed with linear cooperative transition theory for the solvent-stabilizing effect in the mixture with active compounds. Theoretical analyses confirmed that both imidazole and imidazolium ions in the solutions competitively interact with the side chain of the triple helix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c02838 | DOI Listing |