Single Molecule DNA Analysis Based on Atomic-Controllable Nanopores in Covalent Organic Frameworks.

Nano Lett

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We explored the application of two-dimensional covalent organic frameworks (2D COFs) in single molecule DNA analysis. Two ultrathin COF nanosheets were exfoliated with pore sizes of 1.1 nm (COF-1.1) and 1.3 nm (COF-1.3) and covered closely on a quartz nanopipette with an orifice of 20 ± 5 nm. COF nanopores exhibited high size selectivity for fluorescent dyes and DNA molecules. The transport of long (calf thymus DNA) and short (DNA-80) DNA molecules through the COF nanopores was studied. Because of the strong interaction between DNA bases and the organic backbones of COFs, the DNA-80 was transported through the COF-1.1 nanopore at a speed of 270 μs/base, which is the slowest speed ever observed compared with 2D inorganic nanomaterials. This study shows that the COF nanosheet can work individually as a nanopore monomer with controllable pore size like its biological counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c04633DOI Listing

Publication Analysis

Top Keywords

single molecule
8
molecule dna
8
dna analysis
8
covalent organic
8
organic frameworks
8
cof nanopores
8
dna molecules
8
dna
6
analysis based
4
based atomic-controllable
4

Similar Publications

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

We have established a new route for boron-rich ruthenaborane clusters utilizing [BH·THF] and a ruthenium precursor featuring chelating ligands. Salt elimination reactions between [K(CHNE)], (E = S; Se) and [RuCl(PPh)], afforded -[Ru(κ--CHNE)(PPh)], -- (-: E = S and -: E = Se). Following the ligand exchange reaction with the 1,2-bis (diphenylphosphino)ethane (dppe) ligand yielded -[Ru(κ--CHNE)(dppe)] (-: E = S; -: E = Se).

View Article and Find Full Text PDF

Abnormal expression of HLA class Ib, MICA and MICB molecules is associated with the evolution of pathological conditions and clinical settings. Here, we use RNA-sequencing data from two publicly-available projects, from different human organs and tissues and at single-cell level, to present their transcriptional expression throughout the human body, in comparison to that of HLA class Ia, HLA class II, their costimulatory molecules, and the main HLA transcription factors. Our analyses for 21 target genes reveal that median gene expression differs by orders of magnitude and that the classical/non-classical HLA distinction is not absolute for overall expression.

View Article and Find Full Text PDF

Archimedean spirals are architectural motifs that are found in nature. The facial asymmetry of amphiphilic molecules or macromolecules has been a key parameter in the preparation of these well-organized two-dimensional nanostructures in the laboratory. This facial asymmetry is also present in the helical grooves of chiral helical substituted poly(phenylacetylene)s (PPAs) and poly(diphenylacetylene)s (PDPAs), making them excellent candidates for self-assembly into 2D Archimedean nanospirals or nanotoroids.

View Article and Find Full Text PDF

All-small-molecule organic solar cells (ASM-OSCs) with completely definite chemical structure are an ideal model to establish the relationship between molecular structure and device performance via aggregates. The end-capped acceptor unit is of great significance in the regulation of aggregates by essential molecular interactions. However, the successful end-capped acceptor units for small-molecule donors have been rather poorly studied and only focused on the alkyl substituted rhodamine, limiting further development for ASM-OSCs.

View Article and Find Full Text PDF