Sr-Nd-Hf isotopic analysis of reference materials and natural and anthropogenic particulate matter sources: Implications for accurately tracing North African dust in complex urban atmospheres.

Talanta

Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA. Electronic address:

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present novel chemical separation protocols for isotopic analysis of low mass aliquots (0.3 mg and 25 mg) of several reference materials and real-world samples of relevance to urban airborne particulate matter (PM) investigations. A high-yielding gravity flow column chromatography scheme was developed for facile and quantitative separation of Sr, Nd, and Hf prior to multi collector - inductively coupled plasma - mass spectrometry (MC-ICP-MS). Because we are interested in isolating and accurately quantitating individual anthropogenic and natural aerosol sources in complex industrial/metropolitan atmospheric environments, laboratory protocols were optimized using National Institute of Standards and Technology Standard Reference Material (SRM) 1648a (urban atmospheric PM), SRM 1633b (coal fly ash), and European Commission standards BCR-723 (vehicular road dust), and BCR-2 (basalt rock standard). Sr, Nd, and Hf procedural blanks from column chromatography were low (averaging only 37 pg, 17 pg, 11 pg, respectively) and recoveries were high (averaging 95%, 82%, and 92%, respectively). A volume-adjustment protocol was established using isotope reference solutions SRM 987 (SrCO), JNdi (NdO), and in-house Hf standards to dilute the dried samples prior to MC-ICP-MS based on projected uncertainties for low sample masses. Sr/Sr, Nd/Nd, and Hf/Hf isotopic ratios in SRM 1648a, BCR-723, and SRM 1633b are reported for the first time that can serve as provisional reference values. The novel method was used to characterize isotopic ratios and elemental abundances in two anthropogenic urban aerosol sources, namely motor vehicles and petroleum refining using airborne fine PM collected in a vehicular tunnel and fluidized-bed catalytic cracking catalysts, respectively. Two other important mineral-rich urban PM sources, namely soil (i.e., resuspended crustal material) and concrete/cement dust (i.e., construction activity) were also characterized. These are the first isotopic measurements in these environmental compartments and were compared with literature data for long-range transported North African dust, which is a prominent summertime PM source in urban regions in southeastern United States. We demonstrate the capability of coupled Sr-Nd-Hf isotopes to uniquely trace different mineral dust sources with overlapping elemental composition (Sahara-Sahel region, local soil, and concrete/cement) and accurately isolate various urban PM sources demonstrating the superiority of isotopic markers over elemental tracers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858641PMC
http://dx.doi.org/10.1016/j.talanta.2022.123236DOI Listing

Publication Analysis

Top Keywords

isotopic analysis
8
reference materials
8
particulate matter
8
north african
8
african dust
8
column chromatography
8
aerosol sources
8
srm 1648a
8
srm 1633b
8
isotopic ratios
8

Similar Publications

This article presents a multiproxy investigation of metal samples obtained from 48 Nuragic figurines (so-called bronzetti) and three copper bun ingots. These objects originate from three prominent Sardinian sanctuaries and one unidentified site, dating to the late Nuragic period of the early first millennium BCE. The dataset significantly expands the existing scientific database and unwraps the complex fabrication biographies of the figurines from ore to finished object.

View Article and Find Full Text PDF

The huge volcanic eruption at Thera (Santorini), situated in the Aegean Sea, occurred within the Late Minoan IA archaeological period. However, its temporal association with Egyptian history has long been a controversial subject. Traditionally, the eruption was placed in the early 18th Dynasty, associated with Pharaoh Thutmose III as the youngest option or with Pharaoh Nebpehtire Ahmose as the oldest possibility.

View Article and Find Full Text PDF

A Late Bronze Age foreign elite? Investigating mobility patterns at Seddin, Germany.

PLoS One

September 2025

Department of Research, Collections and Conservation, Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark.

During the Late Bronze Age (ca. 11th-8th century BCE), far-reaching and extensive trade and exchange networks linked communities across Europe. The area around Seddin in north-western Brandenburg, Germany, has long been considered as at the core of one such networks.

View Article and Find Full Text PDF

Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming.

Glob Chang Biol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.

Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.

View Article and Find Full Text PDF

Complementary Separation of Novel Synthetic Opioids.

J Am Soc Mass Spectrom

September 2025

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.

The escalating prevalence and diversity of fentanyl analogues poses an immediate concern for the global community. Fentanyl and its analogues are the primary contributors to both fatal and nonfatal overdoses in the United States. The most recent instances of fentanyl-related overdoses have been attributed to the illicit production of fentanyl, characterized by its exceptionally potent nature.

View Article and Find Full Text PDF