A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. | LitMetric

Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava.

PLoS One

Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Owing to climate change impacts, waterlogging is a serious abiotic stress that affects crops, resulting in stunted growth and loss of productivity. Cassava (Manihot esculenta Grantz) is usually grown in areas that experience high amounts of rainfall; however, little research has been done on the waterlogging tolerance mechanism of this species. Therefore, we investigated the physiological responses of cassava plants to waterlogging stress and analyzed global gene transcription responses in the leaves and roots of waterlogged cassava plants. The results showed that waterlogging stress significantly decreased the leaf chlorophyll content, caused premature senescence, and increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves and roots. In total, 2538 differentially expressed genes (DEGs) were detected in the leaves and 13364 in the roots, with 1523 genes shared between the two tissues. Comparative analysis revealed that the DEGs were related mainly to photosynthesis, amino metabolism, RNA transport and degradation. We also summarized the functions of the pathways that respond to waterlogging and are involved in photosynthesis, glycolysis and galactose metabolism. Additionally, many transcription factors (TFs), such as MYBs, AP2/ERFs, WRKYs and NACs, were identified, suggesting that they potentially function in the waterlogging response in cassava. The expression of 12 randomly selected genes evaluated via both quantitative real-time PCR (qRT-PCR) and RNA sequencing (RNA-seq) was highly correlated (R2 = 0.9077), validating the reliability of the RNA-seq results. The potential waterlogging stress-related transcripts identified in this study are representatives of candidate genes and molecular resources for further understanding the molecular mechanisms underlying the waterlogging response in cassava.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782352PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261086PLOS

Publication Analysis

Top Keywords

waterlogging
9
cassava plants
8
plants waterlogging
8
waterlogging stress
8
leaves roots
8
waterlogging response
8
response cassava
8
cassava
6
transcriptomic profiling
4
profiling suggests
4

Similar Publications