Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photosystem I (PSI) is one of two photosystems involved in oxygenic photosynthesis. PSI of cyanobacteria exists in monomeric, trimeric, and tetrameric forms, in contrast to the strictly monomeric form of PSI in plants and algae. The tetrameric organization raises questions about its structural, physiological, and evolutionary significance. Here we report the ∼3.72 Å resolution cryo-electron microscopy structure of tetrameric PSI from the thermophilic, unicellular cyanobacterium sp. TS-821. The structure resolves 44 subunits and 448 cofactor molecules. We conclude that the tetramer is arranged via two different interfaces resulting from a dimer-of-dimers organization. The localization of chlorophyll molecules permits an excitation energy pathway within and between adjacent monomers. Bioinformatics analysis reveals conserved regions in the PsaL subunit that correlate with the oligomeric state. Tetrameric PSI may function as a key evolutionary step between the trimeric and monomeric forms of PSI organization in photosynthetic organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760143PMC
http://dx.doi.org/10.1016/j.xplc.2021.100248DOI Listing

Publication Analysis

Top Keywords

structure tetrameric
8
thermophilic unicellular
8
tetrameric psi
8
psi
6
tetrameric
5
cryo-em structure
4
tetrameric photosystem
4
photosystem ts-821
4
ts-821 thermophilic
4
unicellular non-heterocyst-forming
4

Similar Publications

Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.

View Article and Find Full Text PDF

Resonance assignments of asymmetric tetrameric platelet factor 4 (PF4).

Biomol NMR Assign

September 2025

Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.

Platelet Factor 4 (PF4), also known as CXCL4, is a CXC chemokine crucial for hemostasis, inflammation, and immune responses. Under physiological conditions PF4 assembles into asymmetric tetramers (31.2 kDa) that are dimers of dimers with highly flexible N-terminal regions.

View Article and Find Full Text PDF

The solvent of membrane proteins is the membrane lipids in which they are embedded. Therefore, the nature of the lipids that surround membrane proteins impacts their dynamics and interactions. Unfortunately, how membrane proteins dynamically interact is difficult to study, and little is experimentally known how membrane proteins interplay in a membrane at the molecular scale.

View Article and Find Full Text PDF

ssDNA and ssRNA Promote Phase Condensation of SAMHD1.

Biochemistry

September 2025

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States.

SAMHD1 (SAM domain and HD domain-containing protein 1) is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) with functions in viral restriction, R-loop resolution, DNA repair, telomere maintenance, ssRNA homeostasis, and regulation of self-nucleic acids. As a dNTPase, SAMHD1 functions as an allosterically activated tetramer, where binding of GTP to the A1 activator site of each monomer initiates dNTP-dependent tetramerization. cEM structures reveal that the nucleic-acid-related functions of SAMHD1 involve binding of guanine residues to the A1 site, leading to oligomeric forms that appear as beads-on-a-string on single-stranded RNA and DNA.

View Article and Find Full Text PDF

Dynamin superfamily proteins (DSPs) are large GTPases that play crucial roles in membrane remodeling processes, including vesicle uptake, mitochondrial fission, and opposing fusion events. Among them, dynamin and dynamin-related protein 1 (Drp1) share a conserved domain architecture, yet exhibit unique structural and regulatory features that tailor their functions. This review explores the conformational rearrangements of the mammalian fission DSPs, dynamin and Drp1, focusing on their dimeric and tetrameric structures, lipid-bound assemblies, and key regulatory elements that drive membrane constriction.

View Article and Find Full Text PDF