98%
921
2 minutes
20
We systematically categorized the longer-term (≥3 years) structural and functional characteristics of the ABSORB bioresorbable vascular scaffold (BVS) using optical coherence tomography imaging and coronary vasomotor reactivity testing and further compared the functional characteristics of BVS stented versus remote coronary segments. A total of 92 patients (mean age 56.4 ± 9.7 years, 22.8% women) who underwent percutaneous coronary intervention (76% with acute coronary syndrome) using the ABSORB BVS (112 lesions) were included. Optical coherence tomography analysis (38,790 visible struts) comprised in-segment quantitative lumen/plaque and semiquantitative plaque composition analysis of the neointimal pattern. Epicardial endothelium-dependent and-independent vasomotion was defined as any vasodilatation at low/intermediate intracoronary dose of acetylcholine (ACh) and nitroglycerine, assessed using quantitative coronary angiography. At a median time of 3.2 years follow-up, 79.8% of BVS segments still demonstrated visible struts with a predominant neointimal fibrotic healing pattern in 84% of BVS segments, with 99.5% of struts demonstrating coverage with apposition. Compared with remote segments, BVS segments demonstrated less endothelium-dependent vasodilatation at low (p = 0.06) and intermediate ACh doses (p = 0.04). Hypertension, longer time interval from index percutaneous coronary intervention, and the degree of in-BVS segment neointimal volume (p <0.03 for all) were each independently associated with abnormal BVS endothelium-dependent vasomotor function. Endothelium-independent function was more likely preserved in non-BVS (remote) segments compared with BVS segments (p = 0.06). In conclusion, at 3+ years post-ABSORB BVS insertion, the rate of complete scaffold resorption was low and residual strut presence was high, with a dominant fibrous healing response contributing toward neointimal hyperplasia and endothelium-dependent and-independent vasomotor dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjcard.2021.12.037 | DOI Listing |
Biomimetics (Basel)
January 2025
Nuclear Cardiology Unit and CCT Service, Meir Medical Center, Kfar-Saba 95847, Israel.
Numerous efforts have been invested in previous algorithms to expose and enhance blood vessel (BV) visibility derived from clinical coronary angiography (CAG) procedures, such as noise reduction, segmentation, and background subtraction. Yet, the visibility of the BVs and their luminal content, particularly the small ones, is still limited. We propose a novel visibility enhancement algorithm, whose main body is inspired by a line completion mechanism of the visual system, i.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, Gangnam Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea.
Branch retinal vein occlusion (BRVO) is a leading cause of visual impairment in working-age individuals, though predicting its occurrence from retinal vascular features alone remains challenging. We developed a deep learning model to predict BRVO based on pre-onset, metadata-matched fundus hemisection images. This retrospective cohort study included patients diagnosed with unilateral BRVO from two Korean tertiary centers (2005-2023), using hemisection fundus images from 27 BRVO-affected eyes paired with 81 unaffected hemisections (27 counter and 54 contralateral) for training.
View Article and Find Full Text PDFPhys Eng Sci Med
March 2025
Faculty of Engineering, Department of Biomedical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
Cardiovasc Revasc Med
September 2025
U.O. Cardiologia Ospedaliera, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy. Electronic address:
Background: Data on Absorb bioresorbable vascular scaffold (BVS) use in patients presenting with ST-segment elevation myocardial infarction (STEMI) are limited. Furthermore, Absorb studies including STEMI patients lacked a prespecified implantation technique to optimize BVS deployment. This study examines the 5-year outcomes of BVS in STEMI patients using an optimized implantation strategy and the impact of prolonged dual antiplatelet therapy (DAPT).
View Article and Find Full Text PDFFront Physiol
August 2024
Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China.
Background And Objective: Coronary artery disease remains a leading cause of mortality among individuals with cardiovascular conditions. The therapeutic use of bioresorbable vascular scaffolds (BVSs) through stent implantation is common, yet the effectiveness of current BVS segmentation techniques from Intravascular Optical Coherence Tomography (IVOCT) images is inadequate.
Methods: This paper introduces an enhanced segmentation approach using a novel Wavelet-based U-shape network to address these challenges.