Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776245PMC
http://dx.doi.org/10.3390/ijms23020781DOI Listing

Publication Analysis

Top Keywords

water deficit
12
degs metabolites
12
mild severe
8
severe extended
8
metabolites severe
8
severe
5
degs
5
transcriptomic metabolomic
4
metabolomic ionomic
4
ionomic analyses
4

Similar Publications

Objectives: This study aimed to investigate the effects of repeated exposure to sevoflurane as an anesthetic agent during various developmental stages, namely neonatal, preadolescent, and adult, on behavioral, synaptic, and neuronal plasticity in male and female Wistar rats.

Methods: Rats were exposed to sevoflurane during three developmental stages: neonatal (PN7), pre-adolescence (PN28), and adulthood (PN90). Behavioral performance was evaluated with the Morris Water Maze.

View Article and Find Full Text PDF

In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.

View Article and Find Full Text PDF

Whole genome duplication drives transcriptome reprogramming in response to drought in alfalfa.

Plant Cell Rep

September 2025

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.

Genome doubling did not enhance drought tolerance in alfalfa, but may set the stage for long-term adaptation to drought through a novel transcriptional landscape. Whole genome duplication (WGD) has been shown to enhance stress tolerance in plants. Cultivated alfalfa is autotetraploid, but diploid wild relatives are important sources of genetic variation for breeding.

View Article and Find Full Text PDF

Melatonin's Role in Enhancing Waterlogging Tolerance in Plants: Current Understanding and Future Directions.

Physiol Plant

September 2025

Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.

Waterlogging, increasingly intensified by climate change, limits oxygen availability in the root zone, disrupting carbon and sugar metabolism, leading to energy deficits and oxidative stress that ultimately impair plant growth and productivity. Melatonin, a versatile signaling molecule, mitigates waterlogging-induced stress by enhancing anaerobic respiration and fermentation under oxygen-deprived conditions, upregulating stress-responsive genes, and restoring energy balance through optimized sugar metabolism. It also reduces oxidative damage by strengthening the antioxidant defense system and further improves stress tolerance by modulating phytohormone signaling and influencing rhizosphere microbiome dynamics.

View Article and Find Full Text PDF

Acute or chronic liver damage can result in Hepatic Encephalopathy (HE), a potentially fatal neuropsychiatric condition that leads to cerebral and neurological alterations. Dapagliflozin (DAPA), an orally active Sodium/Glucose cotransporter 2 inhibitor with long duration of action. The study aim was to evaluate the potential protective impact of DAPA against HE caused by Thioacetamide (TAA) in rats.

View Article and Find Full Text PDF