Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphorus (P) is an essential macronutrient necessary for plant growth, development, and reproduction. Two field experiments were carried out in 2018/2019 and 2019/2020 on P-deficient soil to evaluate the impact of foliar fertilization with nanophosphorus (nP) on growth, yield, and physio-biochemical indices, as well as trigonelline content of fenugreek plants under deficient irrigation (dI) stress (a deficit of 20 and 40% of crop evapotranspiration; dI-20 and dI-40). The growth and yield traits, leaf integrity (relative water content and membrane stability index), photosynthetic pigment contents, leaf and seed P contents, and stem and leaf anatomical features significantly decreased under dI-20, with greater reductions recorded under dI-40. In contrast, water-use efficiency, osmoprotective compounds, including free amino acids, soluble sugars, proline, and trigonelline, along with antioxidant contents (ascorbate, glutathione, phenolics, and flavonoids) and their activity increased significantly under both dI-20 and dI-40. However, foliar feeding with nano-P considerably increased plant growth and yield traits, leaf integrity, photosynthetic pigments contents, leaf and seed P contents, and anatomical features. Besides, water-use efficiency, osmoprotectant contents, and antioxidant content and activity were further increased under both dI-20 and dI-40. The positive effects were more pronounced with the smaller nP (25 nm) than the larger nP (50 nm). The results of this study backed up the idea of using foliar nourishment with nP, which can be effective in modulating fenugreek plant growth and seed production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773168PMC
http://dx.doi.org/10.3390/biology11010115DOI Listing

Publication Analysis

Top Keywords

plant growth
12
growth yield
12
di-20 di-40
12
fenugreek plants
8
yield traits
8
traits leaf
8
leaf integrity
8
contents leaf
8
leaf seed
8
seed contents
8

Similar Publications

Pathogenic characteristics of Causing Black Root Rot of Carrot.

Plant Dis

September 2025

Institute of Plant Protection, University of Belgrade-Faculty of Agriculture, Department of Phytopathology, Nemanjina 6, Belgrade , Serbia, 11080.

The pathogenic soilborne and postharvest fungus , as newly reported pathogen in Serbia, caused significant disease symptoms on carrot roots and seedlings in inoculation assays. In October 2023, machine-washed and cold-stored carrot roots showed symptoms of black rot of patches and abundant sporulation. The influence of the postharvest treatment of machine washing was confirmed by additional sampling at the production site.

View Article and Find Full Text PDF

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Dual function of itaconic acid from against .

Plant Dis

September 2025

Shenyang Agricultural University, College of Plant Protection, Nematology Institute of Northern China, Shenyang, China;

Root-knot nematodes (Meloidogyne spp.) cause catastrophic yield losses in global agriculture. This study identified itaconic acid (IA), through comparative metabolomic analysis (the study of small molecules in biological systems), as a key virulence-related metabolite produced by the fungus Trichoderma citrinoviride Snef1910.

View Article and Find Full Text PDF

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Background: Apples are important for human nutrition because these provide vital nutrients, including vitamins and minerals, that are needed for a balanced diet. A suitable environment for the growth and survival of various microorganisms is also provided by multiple nutrients, such as carbohydrates, minerals, vitamins, and amino acids. Penicillium spp.

View Article and Find Full Text PDF