Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The isolation of a virus using cell culture to observe its cytopathic effects (CPEs) is the main method for identifying the viruses in clinical specimens. However, the observation of CPEs requires experienced inspectors and excessive time to inspect the cell morphology changes. In this study, we utilized artificial intelligence (AI) to improve the efficiency of virus identification. After some comparisons, we used ResNet-50 as a backbone with single and multi-task learning models to perform deep learning on the CPEs induced by influenza, enterovirus, and parainfluenza. The accuracies of the single and multi-task learning models were 97.78% and 98.25%, respectively. In addition, the multi-task learning model increased the accuracy of the single model from 95.79% to 97.13% when only a few data of the CPEs induced by parainfluenza were provided. We modified both models by inserting a multiplexer and de-multiplexer layer, respectively, to increase the correct rates for known cell lines. In conclusion, we provide a deep learning structure with ResNet-50 and the multi-task learning model and show an excellent performance in identifying virus-induced CPEs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772705PMC
http://dx.doi.org/10.3390/biomedicines10010070DOI Listing

Publication Analysis

Top Keywords

multi-task learning
16
cytopathic effects
8
induced influenza
8
single multi-task
8
learning models
8
deep learning
8
cpes induced
8
learning model
8
learning
6
cpes
5

Similar Publications

Kinship verification via correlation calculation-based multi-task learning.

PLoS One

September 2025

School of Computer Science and Technology, Huaiyin Normal University, Huai'an, Jiangsu, China.

Previous studies have demonstrated that metric learning approaches yield remarkable performance in the field of kinship verification. Nevertheless, a prevalent limitation of most existing methods lies in their over-reliance on learning exclusively from specified types of given kin data, which frequently results in information isolation. Although generative-based metric learning methods present potential solutions to this problem, they are hindered by substantial computational costs.

View Article and Find Full Text PDF

Dosiomics-guided deep learning for radiation esophagitis prediction in lung cancer: optimal region of interest definition via multi-branch fusion auxiliary learning.

Radiother Oncol

September 2025

Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.

Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.

Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.

View Article and Find Full Text PDF

With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.

View Article and Find Full Text PDF

Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process.

View Article and Find Full Text PDF

Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.

View Article and Find Full Text PDF