98%
921
2 minutes
20
SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795524 | PMC |
http://dx.doi.org/10.1073/pnas.2116550119 | DOI Listing |
Front Immunol
September 2025
Immunocore Ltd., Abingdon, United Kingdom.
Background: The programmed cell death protein 1 (PDCD1 or PD-1) is a key regulatory immune checkpoint and a major target for therapeutic intervention. In oncology, antibodies blocking the PD-1 pathway are used to activate immune cells to promote anti tumour immunity while in immune-mediated inflammatory diseases, PD-1 agonist molecules have the potential to achieve immune suppression. NK cells are a specialised population of innate lymphocytes able to recognize a large range of distressed cells including damaged tissues in autoimmune and inflammatory conditions.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2025
University of Washington, Seattle, Washington, USA.
Prior findings indicate that individuals who stutter do not show the typical modulation of auditory processing that is observed during speech movement planning in nonstuttering speakers. We now ask whether this lack of planning-related sensory modulation in stuttering adults is specific to the auditory domain. In this first study (15 stuttering and 15 nonstuttering participants), we implemented the prior stimulation timeline in a paradigm with orofacial skin stretch stimuli.
View Article and Find Full Text PDFIn Silico Pharmacol
September 2025
Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea.
Unlabelled: Colon cancer accounts for the second leading cause of cancer-associated death worldwide. Since the metastasis contributes to its malignancy, targeting the extracellular matrix (ECM) remodeling is critical for its therapy. Most research had focused on the native form of the structural ECM proteins, termed core matrisomes, to find out the relationship of the TME to colon cancer progression.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
CysB is a member of the large bacterial LysR-type transcriptional regulator (LTTR) protein family. Like the majority of LTTRs, CysB functions as a homotetramer in which each subunit has an N-terminal winged-helix-turn-helix (wHTH) DNA-binding domain connected to an effector-binding domain by a helical hinge region. CysB is best known for its role in regulating the expression of genes associated with sulfur uptake and biosynthesis of cysteine in Gram-negative species such as and .
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell The
Despite its potential as a cancer immunotherapy, wild-type IL-2 is limited by dose-limiting toxicities, including vascular leak syndrome, and its strong activation of regulatory T cells (Tregs), which dampens anti-tumor immunity. These drawbacks are largely driven by IL-2's binding to IL-2Rα, and avoiding this interaction can reduce IL-2-associated toxicities, although it cannot completely eliminate them. To overcome these limitations, βγ-biased IL-2 variants (Non-α-IL-2) have been developed to selectively activate effector T and NK cells.
View Article and Find Full Text PDF