Calculating and selecting fluid therapy and blood product replacements for horses with acute hemorrhage.

J Vet Emerg Crit Care (San Antonio)

Emergency Surgery and Medicine, Cornell Ruffian Equine Specialists, Elmont, New York, USA.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Blood products, crystalloids, and colloid fluids are used in the medical treatment of severe hemorrhage in horses with a goal of providing sufficient blood flow and oxygen delivery to vital organs. The fluid treatments for hemorrhage will vary depending upon severity and duration and whether hemorrhage is controlled or uncontrolled.

Description: With acute and severe controlled hemorrhage, treatment is focused on rapidly increasing perfusion pressure and blood flow to vital organs. This can most easily be accomplished in field cases by the administration of hypertonic saline. If isotonic crystalloids are used for resuscitation, the volume administered should be at least as great as the estimated blood loss. Following crystalloid resuscitation, clinical signs, HCT, and laboratory evidence of tissue hypoxia may help determine the need for a whole blood transfusion. In uncontrolled hemorrhage, crystalloid resuscitation is often more conservative and is referred to as "permissive hypotension." The goal of "permissive hypotension" would be to provide enough perfusion pressure to vital organs such that function is maintained while keeping blood pressure below the normal range in the hope that clot formation will not be disrupted. Whole blood and fresh frozen plasma in addition to aminocaproic acid are indicated in most horses with severe uncontrolled hemorrhage.

Summary: Blood transfusion is a life-saving treatment for severe hemorrhage in horses. No precise HCT serves as a transfusion trigger; however, an HCT < 15%, lack of appropriate clinical response, or significant improvement in plasma lactate following crystalloid resuscitation and loss of 25% or more of blood volume is suggestive of the need for whole blood transfusion. Mathematical formulas may be used to estimate the amount of blood required for transfusion following severe but controlled hemorrhage, but these are not very accurate and, in practice, transfusion volume should be approximately 40% of estimated blood loss.

Key Points: Modest hemorrhage, <15% of blood volume (<12 mL/kg), can be fully compensated by physiological mechanisms and generally does not require fluid or blood product therapy. More severe hemorrhage, >25% of blood volume (> 20 mL/kg), often requires crystalloid or blood product replacement, while acute loss of greater than 30% (>24 mL/kg) of blood volume may result in hemorrhagic shock requiring resuscitation treatments Uncontrolled hemorrhage is a common occurrence in equine practice, and is most commonly associated with abdominal bleeding (eg, uterine artery rupture in mares). If the hemorrhage can be controlled such as by ligation of a bleeding vessel, then initial efforts to resuscitate the horse should focus on increasing perfusion pressure and blood flow to organs as quickly as possible with crystalloids or colloids while assessing need for whole blood transfusion. While fluid therapy is being administered every effort to physically control hemorrhage should be made using ligatures, application of compression, surgical methods, and local hemostatic agents like collagen-, gelatin-, and cellulose-based products, fibrin, yunnan baiyao (YB), and synthetic glues Although some synthetic colloids have been shown to be associated with acute kidney injury in people receiving resuscitation therapy, this undesirable effect in horses has not been reported.

Download full-text PDF

Source
http://dx.doi.org/10.1111/vec.13127DOI Listing

Publication Analysis

Top Keywords

blood
12
blood flow
12
vital organs
12
perfusion pressure
12
blood transfusion
12
hemorrhage
10
fluid therapy
8
treatment severe
8
severe hemorrhage
8
hemorrhage horses
8

Similar Publications

Background: Relapsed or refractory cases of pediatric acute myeloid leukemia (AML) have poor outcomes despite advancements in chemotherapy and hematopoietic stem cell transplantation (HSCT). While a second HSCT is often a salvage option, its outcomes vary widely, and prognostic factors remain unclear.

Objectives: This study aimed to evaluate outcomes and identify prognostic factors in pediatric patients with AML who underwent multiple HSCTs.

View Article and Find Full Text PDF

Moyamoya syndrome (MMS) is a chronic vasculopathy characterized by progressive stenosis of intracerebral arteries, leading to an increased risk of stroke. Children with Down syndrome (DS) are at an increased risk of co-occurring medical conditions, including MMS and leukemia. We report four patients with the triad of DS, MMS, and acute lymphoblastic leukemia (ALL).

View Article and Find Full Text PDF

Acute leukaemias are the commonest cancers in children and young people (CYP). Off-treatment surveillance is assumed to improve relapse detection, but whether this affects subsequent survival and quality of life is unclear. This systematic review searched 13 databases and two trial registries in December 2022.

View Article and Find Full Text PDF

Background: Local control strategies in pediatric oncology are guided by disease-specific considerations. Effective communication of the goals of surgical procedure and associated intraoperative events plays a crucial role in shaping subsequent treatment decisions. However, accurately and comprehensively documenting these findings remains challenging, with considerable variability across different tumor types.

View Article and Find Full Text PDF

Background: Hospital-acquired venous thromboembolism (HA-VTE) is a leading cause of morbidity and mortality among hospitalized adults. Numerous prognostic models have been developed to identify those patients with elevated risk of HA-VTE. None, however, has met the necessary criteria to guide clinical decision-making.

View Article and Find Full Text PDF