Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Organic photovoltaics (OPV) is an emerging solar cell technology that offers vast advantages such as low-cost manufacturing, transparency, and solution processability. However, because the performance of OPV devices is still disappointing compared to their inorganic counterparts, better understanding of how controlling the molecular-level morphology can impact performance is needed. To this end, one has to overcome significant challenges that stem from the complexity and heterogeneity of the underlying electronic structure and molecular morphology. In this Letter, we address this challenge in the context of the DBP/C OPV system by employing a modular workflow that combines recent advances in electronic structure, molecular dynamics, and rate theory. We show how the wide range of interfacial pairs can be classified into four types of interfacial donor-acceptor geometries and find that the least populated interfacial geometry gives rise to the fastest charge transfer (CT) rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c03618 | DOI Listing |