98%
921
2 minutes
20
The diverse populations of tissue-resident and transitory T cells present in the skin share a common functional need to enter, traverse, and interact with their environment. These processes are largely dependent on the regulated expression of adhesion molecules, such as selectins and integrins, which mediate bidirectional interactions between immune cells and skin stroma. Dysregulation and engagement of adhesion pathways contribute to ectopic T-cell activity in tissues, leading to the initiation and/or exacerbation of chronic inflammation. In this paper, we review how the molecular interactions supported by adhesion pathways contribute to T-cell dynamics and function in the skin. A comprehensive understanding of the molecular mechanisms underpinning T-cell adhesion in inflammatory skin disorders will facilitate the development of novel tissue-specific therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669513 | PMC |
http://dx.doi.org/10.1016/j.xjidi.2021.100014 | DOI Listing |
Front Genet
August 2025
Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
Background: Gastric cancer (GC) is a leading cause of cancer-related mortality; however, biomarkers predicting its immunotherapy resistance remain scarce. Vascular cell adhesion molecule ()-, an immune cell adhesion mediator, is implicated in tumor progression; however, its prognostic and immunomodulatory roles in GC remain unclear.
Methods: In this study, we analyzed expression and its clinical relevance in GC using RNA-sequencing data from The Cancer Genome Atlas.
Cancer Lett
September 2025
Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huaian, 223300, Jiangsu Province, China; Key Laboratory of Autoimmune Diseases of Huaian City, Huaian, 223300, Jiangsu Pr
CAR-T cell therapy, as a representative technology in cancer immunotherapy, has demonstrated notable success in the treatment of hematologic malignancies; however, a significant proportion of patients fail to achieve sustained remission. Through the analysis of bone marrow sequencing data prior to CD19 CAR-T cell therapy, we identified cellular adhesion as a pivotal factor influencing clinical outcomes. We developed a model to predict B-ALL treatment efficacy based on the core genes associated with cellular adhesion, which was validated in our clinical cohort.
View Article and Find Full Text PDFJCI Insight
September 2025
Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, and.
Steroid-refractory gut acute graft-versus-host disease (SR-Gut-aGVHD) is the major cause of nonrelapse death after allogeneic hematopoietic cell transplantation. High numbers of donor-type IL-22+ T cells, IL-22-dependent dysbiosis, and loss of antiinflammatory CX3CR1hi mononuclear phagocytes (MNPs) play critical roles in SR-Gut-aGVHD pathogenesis. CEACAM1 on intestinal epithelial cells (IECs) is proposed to regulate bacterial translocation and subsequent immune responses in the intestine.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Orthopedic Surgery, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China.
The purpose of this study was to investigate potential therapeutic targets for osteosarcoma (OS) and offer hints regarding genetic factors for OS treatment using a bioinformatics method. This study processed 3 OS datasets from the gene expression omnibus database using R software, screening for differentially expressed genes (DEGs). After enrichment analysis, based on expression quantitative trait loci data and the genome-wide association study data of OS, Mendelian randomization analysis was used to screen the genes closely related to OS disease, which intersect with DEGs to obtain co-expressed genes, validation datasets were employed to verify the results.
View Article and Find Full Text PDFClin Transplant Res
September 2025
Department of Preventive Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
Dendritic cells (DCs) are highly efficient antigen-presenting cells located throughout body tissues and surfaces. Initial studies described these cells as potent activators of naïve T lymphocytes; however, subsequent research has demonstrated that DCs can also regulate T cell activation, survival, and effector functions. DCs possessing T cell regulatory properties, known as regulatory DCs (regDCs), are phenotypically immature cells with modified functionality.
View Article and Find Full Text PDF