Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Skyrmionic magnetic states are promising in advanced spintronics. This topic is experiencing recent progress in 2D magnets, with, for example, a near 300 K Curie temperature observed in Fe GeTe . However, despite previous studies reporting skyrmions in Fe GeTe , such a system remains elusive, since it has been reported to host either Néel-type or Bloch-type textures, while a net Dzyaloshinskii-Moriya interaction (DMI) cannot occur in this compound for symmetry reasons. It is thus desirable to develop an accurate model to deeply understand Fe GeTe . Here, a newly developed method adopting spin invariants is applied to build a first-principle-based Hamiltonian, which predicts colorful topological defects assembled from the unit of Bloch lines, and reveals the critical role of specific forms of fourth-order interactions in Fe GeTe . Rather than the DMI, it is the multiple fourth-order interactions, with symmetry and spin-orbit couplings considered, that stabilize both Néel-type and Bloch-type skyrmions, as well as antiskyrmions, without any preference for clockwise versus counterclockwise spin rotation. This study also demonstrates that spin invariants can be used as a general approach to study complex magnetic interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202107779 | DOI Listing |