Ultrafast and stable phase transition realized in MoTe-based memristive devices.

Mater Horiz

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China.

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase engineering of two-dimensional transition metal dichalcogenides has received increasing attention in recent years due to its atomically thin nature and polymorphism. Here, we first realize an electric-field-induced controllable phase transition between semiconducting 2H and metallic 1T' phases in MoTe memristive devices. The device performs stable bipolar resistive switching with a cycling endurance of over 10, an excellent retention characteristic of over 10 s at an elevated temperature of 85 °C and an ultrafast switching of ∼5 ns for SET and ∼10 ns for RESET. More importantly, the device works in different atmospheres including air, vacuum and oxygen, and even works with no degradation after being placed in air for one year, indicating excellent surrounding and time stability. Raman analysis reveals that the stable resistive switching originates from a controllable phase transition between 2H and 1T' phases. Density functional theory calculations reveal that the Te vacancy facilitates the phase transition in MoTe through decreasing the barrier between 2H and 1T' phases, and serving as nucleation sites due to the elimination of repulsive forces. This electric-field-induced controllable phase transition in MoTe devices offers new opportunities for developing reliable and ultrafast phase transition devices based on atomically thin membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1mh01772aDOI Listing

Publication Analysis

Top Keywords

phase transition
24
controllable phase
12
1t' phases
12
memristive devices
8
atomically thin
8
electric-field-induced controllable
8
resistive switching
8
transition mote
8
phase
7
transition
7

Similar Publications

Objective: To evaluate clinical and laboratory effectiveness of ultrasound treatment for purulent wounds.

Material And Methods: The study enrolled 46 patients with purulent wounds divided into the main group (23 patients, ultrasonic treatment) and the control group (23 patients, traditional treatment). We assessed treatment effectiveness considering visual data, quality of granulation tissue, wound defect area and marginal epithelialization, complete blood count and C-reactive protein.

View Article and Find Full Text PDF

Objective: Social media is an increasingly relevant tool for health education, enabling information exchange, promoting autonomy and supporting informed decision-making. This study introduces Menopausando, a predominantly Portuguese-language digital platform designed to support women during menopausal transition and postmenopause.

Method: This cross-sectional study has been carried out in the Gynecology Discipline, São Paulo University, Brazil, since 2019.

View Article and Find Full Text PDF

The rate of sudden unexpected death in epilepsy (SUDEP) is ~1 per 1000 patients each year. Terminal events reportedly involve repeated and prolonged apnea, suggesting a failure to autoresuscitate. To better understand the mechanisms and identify novel therapeutics, standardized tests to screen for autoresuscitation efficacy are needed in preclinical SUDEP.

View Article and Find Full Text PDF

Transition of Structurally Distinct Amyloids in the Degradation of Protein Materials.

J Phys Chem B

September 2025

Chemistry Division, Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States.

Amyloid materials are formed from the aggregation of single proteins, yet contain polymorphisms where bulk properties are defined by a composition of multiple fibril types. Though desirable as a sustainable material, little is known about how various fibril types survive at high temperatures or in nonpolar solvents due to their highly similar molecular and nanoscale features. Here, we demonstrate that in situ two-dimensional infrared spectroscopy (2DIR), when paired with nanoscale microscopy, can determine the transition temperature of amyloid subpopulations without the use of labels.

View Article and Find Full Text PDF

Structure Engineering Enabled O-O Radical Coupling in Spinel Oxides for Enhanced Oxygen Evolution Reaction.

J Am Chem Soc

September 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.

View Article and Find Full Text PDF