Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bamboo, one of the most abundant biomaterials, has been used as a building material since ancient times; however, its application in functional materials has been rarely explored. Herein, a highly robust and conductive carbonized bamboo aerogel (CBA) is obtained from the natural bamboo through a simple three-step process of pulp oxidization, freeze-drying, and carbonization. The CBA obtained shows not only a low density of 0.02 g/cm but also a high conductivity of 6.42 S/m and remarkable elasticity with a maximum recoverable compressive strain of 60% due to its unique three-dimensional (3D) network randomly stacked with the hybrid structure of carbonized bamboo fibers and films. After encapsulation with silicone resin, the CBA/silicone composite prepared exhibits excellent flexibility and stretchability with a low Young's modulus (0.09 MPa) and a large failure strain (275%). Importantly, the CBA/silicone composite also offers remarkable strain-sensing performance with a maximum gauge factor of 30.6, a short responsive time of 50 ms, and a stable response to cyclic loading over 1000 cycles, which is comparable to those of the piezoresistive composites based on expensive nanomaterials. Moreover, the CBA/silicone composite demonstrates the capability as a wearable strain sensor for human motion recognition comprising finger bending, breathing, and throat movement. Considering the green and sustainable nature of bamboo as a raw material, combined with the excellent piezoresistive performance, low production cost, and simple preparation process, the flexible strain sensors with CBA/silicone composite as a sensing element are promising in wearable electronic devices, personalized healthcare, and artificial intelligence systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.0c01128 | DOI Listing |