98%
921
2 minutes
20
Introduction: Telomere shortening, as seen with aging, can cause chromosomal instability and promote cancer progression. We investigated the association between circulating telomere length and overall and disease-free survival in a sub-cohort of patients with colorectal cancer.
Methods: Baseline genomic DNA from blood leukocytes was extracted from N = 92 newly diagnosed stage I-IV patients with colorectal cancer enrolled at the ColoCare Study site in Heidelberg, Germany. Detailed information on clinicodemographic (including age) and lifestyle risk factors, and clinical outcomes (including recurrence and survival) was collected. Telomere length was measured in DNA using multiplex quantitative polymerase chain reaction. Kaplan Meier survival curves were generated comparing shorter to longer telomere lengths with log-rank testing.
Results: The mean T/S ratio for study patients was 0.5 (range: 0.3-0.9). Shorter telomeres were associated with older age at baseline. Patients with shorter telomeres experienced a worse overall and disease-free survival, although this association did not reach statistical significance. Kaplan-Meier survival curves for those with circulating telomere length below vs. above the median showed poorer overall (log-rank p = 0.31) and disease-free survival (long-rank p = 0.23).
Conclusions: Our results suggest that individuals with shorter telomeres, as seen with aging, may experience a worse overall and disease-free survival after colorectal cancer diagnosis. Larger sample sizes with longer follow-up are needed to further evaluate telomere length as a prognostic biomarker in colorectal cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197691 | PMC |
http://dx.doi.org/10.1016/j.jgo.2021.12.008 | DOI Listing |
Kardiologiia
September 2025
National Medical Research Center for Therapy and Preventive Medicine, Moscow.
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia, the prevalence of which increases with age. Slowing down senescence is one of the urgent challenges of modern science. Therefore, it is important to identify individuals with markers of premature cellular senescence for further development of pharmacological agents capable of slowing it.
View Article and Find Full Text PDFChron Respir Dis
September 2025
Department of Pulmonology, II.Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Case presentationDescription of a patient with a progressive destructive lung disease resembling pleuroparenchymal fibroelastosis, liver cirrhosis and bone marrow changes. Genetic workup identified a rare heterozygous coding variant in the (telomerase reverse transcriptase) gene c.472 C>T; p.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Polyploidy, a conserved mechanism involved in normal development and tissue homeostasis, plays a paradoxical role in cancer by facilitating both tumor progression and therapeutic vulnerability. Although polyploidization may confer survival advantages to cancer cells, its controlled induction could represent an effective anticancer strategy. Aurora B kinase, a critical regulator of mitosis, plays a pivotal role in ensuring chromosomal integrity and preventing polyploidy.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
Department of Epidemiology, School of Public Health, Shanxi Medical University, Jinzhong, China.
The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.
View Article and Find Full Text PDFAm J Hum Biol
September 2025
University of California, San Francisco, San Francisco, California, USA.
Background: Telomere length (TL) is a valuable marker of aging and stress that reflects both genetic and environmental influences. Quantitative PCR (qPCR) TL measurement is a powerful and cost-effective assay, especially in population studies with limited quantities of source material. Nevertheless, collecting and transporting high-quality blood samples can be logistically challenging, and research suggests that several preanalytical and analytical factors can influence the reliability and precision of the qPCR assay.
View Article and Find Full Text PDF