Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contact engineering is a prerequisite for achieving desirable functionality and performance of semiconductor electronics, which is particularly critical for organic-inorganic hybrid halide perovskites due to their ionic nature and highly reactive interfaces. Although the interfaces between perovskites and charge-transporting layers have attracted lots of attention due to the photovoltaic and light-emitting diode applications, achieving reliable perovskite/electrode contacts for electronic devices, such as transistors and memories, remains as a bottleneck. Herein, a critical review on the elusive nature of perovskite/electrode interfaces with a focus on the interfacial electrochemistry effects is presented. The basic guidelines of electrode selection are given for establishing non-polarized interfaces and optimal energy level alignment for perovskite materials. Furthermore, state-of-the-art strategies on interface-related electrode engineering are reviewed and discussed, which aim at achieving ohmic transport and eliminating hysteresis in perovskite devices. The role and multiple functionalities of self-assembled monolayers that offer a unique approach toward improving perovskite/electrode contacts are also discussed. The insights on electrode engineering pave the way to advancing stable and reliable perovskite devices in diverse electronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202108616DOI Listing

Publication Analysis

Top Keywords

electrode engineering
12
perovskite/electrode contacts
8
perovskite devices
8
interfaces
5
electrode
4
engineering halide
4
perovskite
4
halide perovskite
4
perovskite electronics
4
electronics plenty
4

Similar Publications

Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.

View Article and Find Full Text PDF

Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.

Methods: A virtual driving simulator was utilized to carry out the experiment.

View Article and Find Full Text PDF

We present a method for probing the quantum capacitance associated with the Rydberg transition of surface electrons on liquid helium using radio-frequency (rf) reflectometry. Resonant microwave excitation of the Rydberg transition induces a redistribution of image charges on capacitively coupled electrodes, giving rise to a quantum capacitance originating from adiabatic state transitions and the finite curvature of the energy bands. By applying frequency-modulated resonant microwaves to drive the Rydberg transition, we systematically measured a capacitance sensitivity of 0.

View Article and Find Full Text PDF

Two-dimensional 1T-phase MnIrO for high-performance acidic oxygen evolution reaction.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.

View Article and Find Full Text PDF

Core-shell electrodes provide a potential and innovative approach for significantly enhancing the performance and capacity of supercapacitors (SCs) by combining two distinct materials. The capabilities of these advanced electrodes surpass those of conventional single electrodes. Specifically, these exhibit better energy storage, higher power density, and improved overall performance.

View Article and Find Full Text PDF