98%
921
2 minutes
20
Background: Repetitive transcranial magnetic stimulation (rTMS) is a treatment shown to be effective in treating major depressive disorder (MDD). However, the effect of rTMS therapy on functional connectivity within the brains of patients being treated for MDD remains poorly understood. Few studies have investigated the effects of a course of rTMS on resting-state network activity.
Methods: In an open-label naturalistic study, resting-state fMRI was collected prior to and following a four-week course of rTMS in 24 participants with MDD and 2 with bipolar disorder. Montgomery-Asberg depression rating scale scores showed a response rate of 42%.
Results: Clinical response to rTMS was correlated with reduced functional connectivity from baseline to post-rTMS within the salience network (SN). This indicates SN connectivity may be functionally relevant to how rTMS produces antidepressant effects. In an exploratory inter-network analysis, connectivity between the SN and posterior default mode network (pDMN) was higher following treatment. However this difference was not correlated with the antidepressant response. Local BOLD activity within these networks was also assessed using the fractional amplitude of low-frequency fluctuations (fALFF) technique. Local activity increased in both the SN and pDMN following rTMS. However this increase was also not correlated with antidepressant response.
Limitations: The sample population was heterogeneous, continuing current use of medications, and the study lacked a healthy control or sham stimulation comparison group.
Conclusions: Together, these results provide evidence for the involvement of the SN in the antidepressant response to rTMS treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2021.12.129 | DOI Listing |
J Am Coll Health
September 2025
Hubbard School of Journalism and Mass Communication, University of Minnesota, Minneapolis, Minnesota, USA.
: An evolving THC product marketplace is diffusing through college campuses. It is essential to understand college students' THC knowledge, attitudes, practices and product packaging perceptions to identify campus health education and messaging strategies. : Participants were 30 undergraduate college students at a large-midwestern, public university.
View Article and Find Full Text PDFClin Orthop Relat Res
August 2025
Department of Pediatric Surgery, Hong Qi Hospital, Mudanjiang Medical University, Mudanjiang, PR China.
Phys Rev Lett
August 2025
Northeastern University, Department of Physics, Center for Theoretical Biological Physics, Boston, Massachusetts 02115, USA.
Sparse connectivity is a hallmark of the brain and a desired property of artificial neural networks. It promotes energy efficiency, simplifies training, and enhances the robustness of network function. Thus, a detailed understanding of how to achieve sparsity without jeopardizing network performance is beneficial for neuroscience, deep learning, and neuromorphic computing applications.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Universitat Oberta de Catalunya, Barcelona, Spain.
Background: Originally adapted from a paper-based guide for skin-related neglected tropical diseases (NTDs), version 3.0.0 of the World Health Organization (WHO) SkinNTDs app aims to strengthen disease surveillance and frontline health worker capacity in NTD-endemic settings.
View Article and Find Full Text PDFSci Adv
September 2025
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
The locus coeruleus-norepinephrine (LC-NE) system regulates arousal and awakening; however, it remains unclear whether the LC does this in a global or circuit-specific manner. We hypothesized that sensory-evoked awakenings are predominantly regulated by specific LC-NE efferent pathways. Anatomical, physiological, and functional modularities of LC-NE pathways involving the mouse basal forebrain (BF) and pontine reticular nucleus (PRN) were tested.
View Article and Find Full Text PDF