98%
921
2 minutes
20
HIV-1 Nef is an attractive target for antiretroviral drug discovery because of its role in promoting HIV-1 infectivity, replication, and host immune system avoidance. Here, we applied a screening strategy in which recombinant HIV-1 Nef protein was coupled to activation of the Src-family tyrosine kinase Hck, which enhances the HIV-1 life cycle in macrophages. Nef stimulates recombinant Hck activity , providing a robust assay for chemical library screening. High-throughput screening of more than 730 000 compounds using the Nef·Hck assay identified six unique hit compounds that bound directly to recombinant Nef by surface plasmon resonance (SPR) and inhibited HIV-1 replication in primary macrophages in the 0.04 to 5 μM range without cytotoxicity. Eighty-four analogs were synthesized around an isothiazolone scaffold from this series, many of which bound to recombinant Nef and inhibited HIV-1 infectivity in the low to submicromolar range. Compounds in this series restored MHC-I to the surface of HIV-infected primary cells and disrupted a recombinant protein complex of Nef with the C-terminal tail of MHC-I and the μ1 subunit of the AP-1 endocytic trafficking protein. Nef inhibitors in this class have the potential to block HIV-1 replication in myeloid cells and trigger recognition of HIV-infected cells by the adaptive immune system .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274903 | PMC |
http://dx.doi.org/10.1021/acsinfecdis.1c00288 | DOI Listing |
Antiviral Res
September 2025
Department of Immunology and Pathogen Biology, Key Laboratory of Pathogen and Host-Interactions, Ministry of Education, School of Medicine, Tongji University, Shanghai 200331, China. Electronic address:
DMBT1 is a large scavenger receptor cysteine rich (SRCR) B protein that has been reported as a tumor suppressor gene and a co-receptor for HIV-1 infection. Here we found DMBT1 is a major mucosal protein bound to SARS-CoV-2. Overexpression of DMBT1 in 293T cells may enhanced infection by SARS-CoV-2 in ACE2 dependent manner.
View Article and Find Full Text PDFThe vast majority of persons living with HIV-1 who discontinue antiretroviral therapy (ART) demonstrate viral rebound, but the tissue-level events that lead to rebound viremia are poorly understood. Here we report the origin, dynamics, and correlates of viral rebound in 16 rhesus macaques (RMs) infected with molecularly barcoded SIVmac239M, treated with ART for 70 weeks, and necropsied on day 12 after ART discontinuation. Barcode analysis of plasma following ART discontinuation identified 1 to 38 rebounding barcode-defined viral lineages per animal, with 1 to 4 rebounding lineages contributing to first measurable rebound viremia.
View Article and Find Full Text PDFUnlabelled: Heterogenous transcription start site (TSS) usage dictates the structure and function of unspliced HIV-1 RNAs (usRNA). We and others have previously reported that expression and Rev/CRM1-mediated nuclear export of HIV-1 usRNA in macrophages activates MDA5, MAVS, and innate immune signaling cascades. In this study, we reveal that MDA5 sensing of viral usRNA is strictly determined by TSS, 5' leader structure, and RNA function.
View Article and Find Full Text PDFVirol Sin
September 2025
State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China. Electronic address:
Herpes simplex virus 2 (HSV-2) is a major pathogen causing neonatal herpes and increasing the risk of human immunodeficiency virus 1 (HIV-1) infection. However, the mechanisms underlying host restriction of HSV-2 infection are still not fully understood. The ubiquitously expressed transcript isoform 2 (UXT-V2), an α-type prefoldin protein, functions as a versatile transcription factor associated with numerous human tumors, but its role in viral infection remains unclear.
View Article and Find Full Text PDFRinsho Ketsueki
September 2025
Department of Hematology, Graduate School of Medicine, Kyoto University.
Antiretroviral therapy (ART) is a well-established treatment for HIV infection that suppresses viral replication by inhibiting viral enzymatic activity, thereby preventing progression to immunodeficiency. However, discontinuation of ART typically leads to rapid viral rebound within weeks, due to the reactivation of latent HIV from long-lived reservoirs such as resting CD4 T cells. Eradication of these latent reservoirs is essential to achieve a cure for HIV.
View Article and Find Full Text PDF