Uptake, Occurrence, and Effects of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Plants and Edible Crops.

J Agric Food Chem

Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The plant uptake of pharmaceuticals that include nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics from contaminated environment has benefits and drawbacks. These pharmaceuticals enter plants mostly through irrigation with contaminated water and application of sewage sludge as soil fertilizer. Aquatic plants withdraw these pharmaceuticals from water through their roots. Numerous studies have observed the translocation of these pharmaceuticals from the roots into the aerial tissues. Furthermore, the occurrence of the metabolites of NSAIDs in plants has been observed. This article provides an in-depth critical review of the plant uptake of NSAIDs and analgesics, their translocation, and toxic effects on plant species. In addition, the occurrence of metabolites of NSAIDs in plants and the application of constructed wetlands using plants for remediation are reviewed. Factors that affect the plant uptake and translocation of these pharmaceuticals are examined. Gaps and future research are provided to guide forthcoming investigations on important aspects that worth explorations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.1c06499DOI Listing

Publication Analysis

Top Keywords

plant uptake
12
nonsteroidal anti-inflammatory
8
anti-inflammatory drugs
8
nsaids analgesics
8
translocation pharmaceuticals
8
occurrence metabolites
8
metabolites nsaids
8
nsaids plants
8
plants
6
pharmaceuticals
5

Similar Publications

Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.

View Article and Find Full Text PDF

Static Magnetic Field Promotes Wheat Nitrogen Assimilation by Repressing Jasmonates Biosynthesis Through TaHY5.

Plant Biotechnol J

September 2025

College of Agronomy, Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Henan Agricultural University, Zhengzhou, China.

The magnetic field is a continuously present environmental factor. It has been found that many species, including plants, can sense and utilise it. However, the effects of the magnetic field on plants and its potential utilisation, especially in crops, have been little explored.

View Article and Find Full Text PDF

Oil Delivery to Bovine Satellite Cells in Cultivated Meat by Soy Protein Colloidosomes.

ACS Appl Mater Interfaces

September 2025

Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.

Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.

View Article and Find Full Text PDF

Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.

View Article and Find Full Text PDF

Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.

View Article and Find Full Text PDF