A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Supervised Machine Learning-Aided SCAPS-Based Quantitative Analysis for the Discovery of Optimum Bromine Doping in Methylammonium Tin-Based Perovskite (MASnIBr). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this investigation, supervised machine learning (ML) was utilized to accurately predict the optimum bromine doping concentration in single-junction MASnIBr devices. Data-driven optimizations were carried out on 42 000 unique devices built utilizing a solar cell capacitance simulator (SCAPS). The devices were investigated through variations of bromine doping %, bandgap, electron affinity, series resistance, back-contact metal, and acceptor concentration─parameters that were specifically chosen because of their tunable nature and ability to be modified through facile experimental fabrication techniques of the device. Five different algorithms were utilized to explore feature engineering. The first step before bromine doping within the device included validation studies of a pure tin-based system, MASnI: a power conversion efficiency (PCE) of 6.71% was achieved, having close congruence with experimental data. ML analyses for optimal bromine doping resulted in the discovery of two devices with bromine concentrations of 22.43% (Br22) and 25.63% (Br25), with the latter being a more fine-tuned value obtained through extra rigorous analysis. To understand the total and relative impact of each feature on power conversion efficiency (PCE), Br22 and Br25 were analyzed with a state-of-the-art algorithm, namely, the SHapley Additive exPlanations (SHAP) algorithm. Focusing on the two discovered devices, further device optimizations were carried out utilizing SCAPS. Modulations of absorber thickness, bulk and interfacial defect density, and choice of electron transport layer (ETL) and hole transport layer (HTL) materials were tried. Device stability was analyzed through carrier lifetime studies. Following these optimization steps, Br22 and Br25 demonstrated final high PCE values of 20.72 and 17.37%, respectively. The ML-assisted quantitative analysis of the current work provides significant confidence for optimal bromine-doped tin-based devices to be considered as viable and competitive nontoxic alternatives to traditional technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c15030DOI Listing

Publication Analysis

Top Keywords

bromine doping
20
supervised machine
8
quantitative analysis
8
optimum bromine
8
optimizations carried
8
power conversion
8
conversion efficiency
8
efficiency pce
8
br22 br25
8
transport layer
8

Similar Publications