Publications by authors named "Saugata Sarker"

This manuscript presents a working model linking chemical disorder and transport properties in correlated-electron perovskites with high-entropy formulations and a framework to actively design them. This work demonstrates this new learning in epitaxial Sr(Ti,Cr,Nb,Mo,W)O thin films that exhibit exceptional crystalline fidelity despite a diverse chemical formulation where most B-site species are highly misfit with respect to valence and radius. X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm a unique combination of chemical disorder and structural perfection in thin and thick epitaxial layers.

View Article and Find Full Text PDF

Hybrid lead halide materials have been highly studied for optoelectronics, but their use with chiral organics in chiro-optoelectronics remains limited. Understanding the ability to impart chirality into bulk materials by incorporating a chiral precursor is of great interest due to unique optical properties directly arising from chirality such as circular dichroism, optical rotatory dispersion, and circularly polarized luminescence. Herein, we used protonated l-nicotine (L-n) (nicotinium cations) as a spacer and templated a variety of structures including a series of (L-n)MX (M = Sn, Pb; X = Cl, Br, I) that take space group 6 in which the lead halide regions template two distinct moieties, both a 1D chain motif and a 0D cluster motif.

View Article and Find Full Text PDF

Incommensurately modulated crystals are a rare class of materials that are notoriously difficult to characterize properly. We have synthesized two new incommensurately modulated compounds, RbTaSe and CsTaSe, based on the MQ (M = Nb, Ta; Q = S, Se) unit using high-temperature solid-state synthesis. Using superspace crystallography in combination with second harmonic generation measurements, we confirmed both materials to be noncentrosymmetric, falling into the superspace group 1(αβγ)0, while the basic cell suggests 2/.

View Article and Find Full Text PDF
Article Synopsis
  • Strong coupling between polarization and strain in ferroelectric complex oxides allows for significant tuning of their properties, particularly demonstrated in KNbO thin films.
  • Applying biaxial strain can drastically increase the Curie temperature, with predictions indicating it could exceed 1325 K under certain conditions.
  • Enhanced properties such as a 46% increase in remanent polarization and a 200% boost in optical second harmonic generation coefficients make lead-free KNbO a promising candidate for high-temperature ferroelectric memory and quantum computing applications.
View Article and Find Full Text PDF

Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take the AMnSb (A = Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at the A site generates the compound (BaSrCaEuYb)MnSb (denoted as AMnSb), giving access to a polar structure with a space group that is not present in any of the parent compounds.

View Article and Find Full Text PDF

With the goal of developing a Si-based anode for Mg-ion batteries (MIBs) that is both efficient and compatible with the current semiconductor industry, the current research utilized classical Molecular Dynamics (MD) simulation in investigating the intercalation of a Mg ion under an external electric field (E-field) in a 2D bilayer silicene anode (BSA). First principles density functional theory calculations were used to validate the implemented EDIP potentials. Our simulation shows that there exists an optimum E-field value in the range of 0.

View Article and Find Full Text PDF

In this research, solar cell capacitance simulator-one-dimensional (SCAPS-1D) software was used to build and probe nontoxic Cs-based perovskite solar devices and investigate modulations of key material parameters on ultimate power conversion efficiency (PCE). The input material parameters of the absorber Cs-perovskite layer were incrementally changed, and with the various resulting combinations, 63,500 unique devices were formed and probed to produce device PCE. Versatile and well-established machine learning algorithms were thereafter utilized to train, test, and evaluate the output dataset with a focused goal to delineate and rank the input material parameters for their impact on ultimate device performance and PCE.

View Article and Find Full Text PDF

In this investigation, supervised machine learning (ML) was utilized to accurately predict the optimum bromine doping concentration in single-junction MASnIBr devices. Data-driven optimizations were carried out on 42 000 unique devices built utilizing a solar cell capacitance simulator (SCAPS). The devices were investigated through variations of bromine doping %, bandgap, electron affinity, series resistance, back-contact metal, and acceptor concentration─parameters that were specifically chosen because of their tunable nature and ability to be modified through facile experimental fabrication techniques of the device.

View Article and Find Full Text PDF