98%
921
2 minutes
20
Prophage 919TP is widely distributed among and is induced to produce free φ919TP phage particles. However, the interactions between prophage φ919TP, the induced phage particle, and its host remain unknown. In particular, phage resistance mechanisms and potential fitness trade-offs, resulting from phage resistance, are unresolved. In this study, we examined a prophage 919TP-deleted variant of and its interaction with a modified lytic variant of the induced prophage (φ919TP ). Specifically, the phage-resistant mutant was isolated by challenging a prophage-deleted variant with lytic phage φ919TP . Further, the comparative genomic analysis of wild-type and φ919TP -resistant mutant predicted that phage φ919TP selects for phage-resistant mutants harboring a mutation in key steps of lipopolysaccharide (LPS) O-antigen biosynthesis, causing a single-base-pair deletion in gene . Our study showed that the -mediated O-antigen defect can cause pleiotropic phenotypes, e.g., cell autoaggregation and reduced swarming motility, emphasizing the role of phage-driven diversification in . The developed approach assists in the identification of genetic determinants of host specificity and is used to explore the molecular mechanism underlying phage-host interactions. Our findings contribute to the understanding of prophage-facilitated horizontal gene transfer and emphasize the potential for developing new strategies to optimize the use of phages in bacterial pathogen control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706939 | PMC |
http://dx.doi.org/10.3390/v13122342 | DOI Listing |
Trends Microbiol
September 2025
Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; HADAL & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark. Electronic address:
As antimicrobial resistance threatens the future of the aquaculture industry, numerous studies have investigated the use of phages against aquaculture diseases over the past decades. Despite reports of efficient pathogen control, commercial phage solutions are sparse. We discuss limitations of phage therapy and provide suggestions for the progression towards commercially viable solutions.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Macrophages are professional phagocytes that play a major role in engulfing and eliminating invading pathogens. Some intracellular pathogens, such as Salmonella enterica serovar Typhimurium, exploit macrophages as niches for their replication, which requires precise and dynamic modulation of bacterial gene expression in order to resist the hostile intracellular environment. Here, we present a comprehensive analysis of the global transcriptome of S.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany. Electronic address:
As antibiotic resistance of bacterial pathogens spreads, interest in bacteriophage (phage) therapy has soared again in many countries. Currently, there is no phage therapeutic with marketing approval and phage treatments are relegated to few patients, mostly under compassionate use schemes when approved drugs failed or are unavailable. Commercially manufactured and approved phage preparations could both expand the availability of therapeutic phages for existing, exemptional treatment schemes and result in more broadly usable phage therapeutics with marketing authorization.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-Traditional Antibacterial Therapy (ESGNTA); Phage Canada, Maple, Ontario, Canada; Unity Health Toronto,
With antimicrobial resistance as a worldwide public health concern, bacteriophage (phage) therapy (PT) may help treat bacterial infections. However, given its particularities compared with traditional small molecule drugs, there are variations in how it is regulated worldwide. Regulators are key players governing PT, yet their perspectives have been largely unexplored.
View Article and Find Full Text PDFACS Infect Dis
September 2025
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.
View Article and Find Full Text PDF