98%
921
2 minutes
20
Chaperone-mediated autophagy (CMA) is a unique proteolytic pathway, in which cytoplasmic proteins recognized by heat shock cognate protein 70 (Hsc70/HSPA8) are transported into lysosomes for degradation. The substrate/chaperone complex binds to the cytosolic tail of the lysosomal-associated membrane protein type 2A (LAMP2A), but whether the interaction between Hsc70 and LAMP2A is direct or mediated by other molecules has remained to be elucidated. The structure of LAMP2A comprises a large lumenal domain composed of two domains, both with the β-prism fold, a transmembrane domain and a short cytoplasmic tail. We previously reported the structural basis for the homophilic interaction of the lumenal domains of LAMP2A, using site-specific photo-crosslinking and/or steric hindrance within cells. In the present study, we introduced a photo-crosslinker into the cytoplasmic tail of LAMP2A and successfully detected its crosslinking with Hsc70, revealing this direct interaction for the first time. Furthermore, we demonstrated that the truncation of the membrane-distal domain within the lumenal domain of LAMP2A reduced the amount of Hsc70 that coimmunoprecipitated with LAMP2A. Our present results suggested that the two-domain architecture of the lumenal domains of LAMP2A underlies the interaction with Hsc70 at the cytoplasmic surface of the lysosome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2021.112986 | DOI Listing |
PLoS One
September 2025
Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
Mammalian cells exhibit three autophagy mechanisms: macroautophagy, microautophagy (MIA), and chaperone-mediated autophagy (CMA), each employing unique mechanisms for transporting cellular material to the lysosome for degradation. MIA involves the engulfment of proteins via lysosomes/late endosomes through membrane invagination, while CMA directly imports cytosolic proteins into lysosomes, selectively targeting those harboring the KFERQ pentapeptide motif, helped by the chaperone HSC70. Despite the identification of several genetic markers of these pathways, our understanding of the underlying mechanisms, particularly in MIA and CMA, remains limited.
View Article and Find Full Text PDFNat Cell Biol
August 2025
Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
Understanding how cells mitigate lysosomal damage is critical for unravelling pathogenic mechanisms of lysosome-related diseases. Here we generate and characterize induced pluripotent stem cell (iPSC)-derived neurons (iNeuron) bearing ceroid lipofuscinosis neuronal 4 (CLN4)-linked DNAJC5 mutations, which revealed extensive lysosomal abnormality in mutant neurons. In vitro membrane-damaging experiments establish lysosomal damages caused by lysosome-associated CLN4 mutant aggregates, as a critical pathogenic linchpin in CLN4-associated neurodegeneration.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
August 2025
Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India. Electronic address
The C-terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase, plays a pivotal role in cellular protein homeostasis by targeting client proteins for proteasomal degradation. DEAD-box RNA helicase DDX17 is a key regulator of RNA metabolism and has been implicated in various cancer-related processes, including Wnt/β-catenin signalling and EMT. In this study, we uncover a novel regulatory axis involving CHIP and DDX17 responsible for modulation of Wnt/β-catenin signalling in colorectal cancer (CRC).
View Article and Find Full Text PDFACS Med Chem Lett
August 2025
Protein Science, Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
STIP1 homology and U-box containing protein 1 (STUB1), also known as the C-terminus of Hsc70-interacting protein (CHIP), is an E3 ligase that plays a crucial role in removal of misfolded proteins via Hsc70. A DEL screen was run against CHIP to identify small-molecule binders. Two hits were identified that were confirmed by biochemical and biophysical techniques, including 2D NMR.
View Article and Find Full Text PDFJ Adv Res
August 2025
Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100
Introduction: Lactate, a glycolysis byproduct, has been implicated in the fibrotic process, while transforming growth factor-beta 1 (TGF-β1) plays a central role in promoting fibrosis. Air pollution, particularly fine particulate matter (PM2.5), represents a significant environmental risk factor for the development of pulmonary fibrosis.
View Article and Find Full Text PDF