Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a high-resolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740770PMC
http://dx.doi.org/10.1073/pnas.2116765118DOI Listing

Publication Analysis

Top Keywords

pcc 6803
12
water oxidation
12
cryo-electron microscopy
8
microscopy structure
8
mesophilic cyanobacterium
8
cyanobacterium pcc
8
mechanism water
8
psii
7
high-resolution cryo-electron
4
structure photosystem
4

Similar Publications

Symbioses between diatoms and the N2-fixing, heterocyst-forming cyanobacterium Richelia spp. are widespread and contribute to primary production. Unique to these symbioses is a variation in the symbiont location: one lives in the host cytoplasm (endobiont) vs.

View Article and Find Full Text PDF

Multichassis Expression of Cyanobacterial and Other Bacterial Biosynthetic Gene Clusters.

ACS Synth Biol

September 2025

Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States.

Heterologous expression of biosynthetic gene clusters (BGCs) is a powerful strategy for natural product (NP) discovery, yet achieving consistent expression across microbial hosts remains challenging. Here, we developed cross-phyla vector systems enabling the expression of BGCs from cyanobacteria and other bacterial origins in Gram-negative , Gram-positive , and two model cyanobacterial strains including unicellular PCC 6803 and filamentous sp. PCC 7120.

View Article and Find Full Text PDF

Cyanobacteria are emerging as a promising platform for whole-cell biotransformation, harnessing solar energy to drive biocatalytic reactions through recombinant enzymes. However, optimisation remains challenging due to the complexity of the cyanobacterial metabolism and the regulatory framework in which heterologous enzymes operate. While many enzymes have been deployed for light-driven whole-cell biotransformations, the different experimental conditions used between studies make direct comparison and systematic improvement difficult.

View Article and Find Full Text PDF

Photosynthetic efficiency (PE) is key to evaluating phototrophic organisms in biotechnological applications. However, current methods offer limited, indirect insights with poor time resolution. To address this, photo-calorespirometry (Photo-CR) was developed, a novel, non-invasive technique for real-time, direct quantification of photosynthetic energy conversion.

View Article and Find Full Text PDF

Carotenoid biosynthesis in photosynthetic organisms involves converting cis-isomers to trans forms through enzymatic and light-induced reactions. While enzymatic pathways are well-documented, the role of light, particularly chlorophyll-mediated sensitization, remains unclear. This gap in understanding complicates efforts to optimize carotenoid production and fully grasp the evolutionary interplay between enzymatic and light-driven processes.

View Article and Find Full Text PDF