A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of starch candidate genes using SLAF-seq and BSA strategies and development of related SNP-CAPS markers in tetraploid potato. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Potato starch is an essential nutrient for humans and is widely used worldwide. Locating relevant genomic regions, mining stable genes and developing candidate gene markers can promote the breeding of new high-starch potato varieties. A total of 106 F1 individuals and their parents (YSP-4 × MIN-021) were used as test materials, from which 20 plants with high starch content and 20 with low starch content were selected to construct DNA pools for site-specific amplified fragment sequencing (SLAF-seq) and bulked segregation analysis (BSA). A genomic region related to the starch traits was first identified in the 0-5.62 Mb of chromosome 2 in tetraploid potato. In this section, a total of 41 non-synonymous genes, which were considered as candidate genes related to the starch trait, were annotated through a basic local alignment search tool (BLAST) search of multiple databases. Six candidate genes for starch (PGSC0003DMG400017793, PGSC0003DMG400035245, PGSC0003DMG400036713, PGSC0003DMG400040452, PGSC0003DMG400006636 and PGSC0003DMG400044547) were further explored. In addition, cleaved amplified polymorphic sequence (CAPS) markers were developed based on single nucleotide polymorphism (SNP) sites associated with the starch candidate genes. SNP-CAPS markers chr2-CAPS6 and chr2-CAPS21 were successfully developed and validated with the F2 population and 24 tetraploid potato varieties (lines). Functional analysis and cloning of the candidate genes associated with potato starch will be performed in further research, and the SNP-CAPS markers chr2-CAPS6 and chr2-CAPS21 can be further used in marker-assisted selection breeding of tetraploid potato varieties with high starch content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691606PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261403PLOS

Publication Analysis

Top Keywords

candidate genes
20
tetraploid potato
16
snp-caps markers
12
potato varieties
12
starch content
12
starch
9
starch candidate
8
potato starch
8
high starch
8
genes starch
8

Similar Publications