Tailoring the Chemical Potential of Crystal Growth Units to Tune the Bulk Structure of Nanocrystals.

Small Methods

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The intrinsic factors affecting the bulk structures of nanocrystallites are not well explored during crystallization. In this study, it is demonstrated that the chemical potential of growth units plays decisive role in governing the final structure of nanocrystals. It is found that the types of reaction vessels are able to vary the chemical potential of growth units, and make the Pt and Pd nanocrystals (NCs) unexpectedly evolve from the cyclic penta-twinned to the single-crystal nanostructures. In turn, it is concluded that the crystal growth units with lower chemical potential favor the formation of crystal nuclei with lower chemical potential during the nucleation. This new approach in tuning the bulk structures of NCs enriches the understanding of the crystallization process under supersaturated (nonequilibrium) condition, and would provide a general guidance for controlling nanocrystals with various thermodynamic forms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202000447DOI Listing

Publication Analysis

Top Keywords

chemical potential
20
growth units
16
crystal growth
8
structure nanocrystals
8
bulk structures
8
potential growth
8
lower chemical
8
potential
5
tailoring chemical
4
potential crystal
4

Similar Publications

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.

View Article and Find Full Text PDF

Azolo[1,5-]pyrimidines (APs) are widely recognized as challenging scaffolds for diverse applications in both medicinal chemistry and materials science. Owing to their high potential, active research is focused on developing new derivatives through the derivatization and functionalization of their molecular structure. Herein, we report an unusual transformation in the AP series initiated by a hydroperoxide anion.

View Article and Find Full Text PDF

Parasitic diseases continue to be a major public health burden, particularly in low- and middle-income countries. With the emergence of drug-resistant strains and limitations of current therapies, there is a growing interest in natural products as alternative treatment options. Coumarins, a diverse class of plant-derived secondary metabolites, have shown significant potential as antiparasitic agents.

View Article and Find Full Text PDF

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF