98%
921
2 minutes
20
A new platform for creating anti-coronavirus epitope vaccines has been developed. Two loop-like epitopes with lengths of 22 and 42 amino acid residues were selected from the receptor-binding motif of the Spike protein from the SARS-CoV-2 virus that participate in a large number of protein-protein interactions in the complexes with ACE2 and neutralizing antibodies. Two types of hybrid proteins, including one of the two selected epitopes, were constructed. To fix conformation of the selected epitopes, an approach using protein scaffolds was used. The homologue of Rop protein from the Escherichia coli ColE1 plasmid containing helix-turn-helix motif was used as an epitope scaffold for the convergence of C- and N-termini of the loop-like epitopes. Loop epitopes were inserted into the turn region. The conformation was additionally fixed by a disulfide bond formed between the cysteine residues present within the epitopes. For the purpose of multimerization, either aldolase from Thermotoga maritima, which forms a trimer in solution, or alpha-helical trimerizer of the Spike protein from SARS-CoV-2, was attached to the epitopes incorporated into the Rop-like protein. To enable purification on the heparin-containing sorbents, a short fragment from the heparin-binding hemagglutinin of Mycobacterium tuberculosis was inserted at the C-terminus of the hybrid proteins. All the obtained proteins demonstrated high level of immunogenicity after triplicate parenteral administration to mice. Sera from the mice immunized with both aldolase-based hybrid proteins and the Spike protein SARS-CoV-2 trimerizer-based protein with a longer epitope interacted with both the inactivated SARS-CoV-2 virus and the Spike protein receptor-binding domain at high titers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527442 | PMC |
http://dx.doi.org/10.1134/S0006297921100096 | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
September 2025
Department of Medical Laboratory, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
Objectives: This study compared the diagnostic accuracy of seven different commercial serological assays for COVID-19, using RT-PCR as the gold standard, through meta-analysis and indirect comparison.
Methods: Fifty-seven studies, published from November 2019 to June 2024, were included. The diagnostic performance of IgA, IgG, and total antibody assays for SARS-CoV-2 was assessed.
Antiviral Res
September 2025
Department of Immunology and Pathogen Biology, Key Laboratory of Pathogen and Host-Interactions, Ministry of Education, School of Medicine, Tongji University, Shanghai, 200331, China. Electronic address:
DMBT1 is a large scavenger receptor cysteine rich (SRCR) B protein that has been reported as a tumor suppressor gene and a co-receptor for HIV-1 infection. Here, we found DMBT1 is a major mucosal protein bound to SARS-CoV-2. Overexpression of DMBT1 in 293T cells may enhanced infection by SARS-CoV-2 in ACE2 dependent manner.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Extensive mutations in SARS-CoV-2 spike protein have rendered most therapeutic monoclonal antibodies (mAbs) ineffective. However, here we describe VYD222 (pemivibart), a human mAb re-engineered from ADG20 (adintrevimab), which maintains potency despite substantial virus evolution. VYD222 received FDA Emergency Use Authorization for pre-exposure prophylaxis of COVID-19 in certain immunocompromised adults and adolescents.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0359, USA.
Discovery of therapeutic antibodies against infectious disease pathogens presents distinct challenges. Ideal candidates must possess not only the properties required for any therapeutic antibody (e.g.
View Article and Find Full Text PDF