98%
921
2 minutes
20
DNA microarrays have been widely employed to understand cancer development. This technology is able to measure expression levels of a large numbers of genes or to genotype multiple regions of a genome in a massively parallel experiment. In addition, the detection of methylation patterns and gene copy number variations are also performed. Clinicians began to apply these findings in personalized medicine for the selection of cancer therapy according to the individual's cancer genomic profile. Because cancer is a complex disease it is of great value to integrate microarray data with genomic and clinical data. Here, we presented an overview of DNA microarray technology and discuss about benefits and challenging of microarray data integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1839-4_15 | DOI Listing |
Analyst
September 2025
School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.
View Article and Find Full Text PDFGenome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan.
Calcium oxalate (CaOx) stones are prevalent in urinary tract stone disease. While their formation can be induced in rats by administering ethylene glycol and vitamin D, the initial nucleation and formation processes are unclear. Here, we aimed to determine where CaOx crystals initially form, examine the associated histological and morphological changes, and clarify the genes whose expression varies at those sites and their function.
View Article and Find Full Text PDFSci Prog
September 2025
Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China.
BackgroundGlaucoma is recognized as the second-leading cause of complete blindness in developed countries and a significant contributor to irreversible vision loss worldwide. Understanding the potential genetic links between neurodegenerative diseases, such as Parkinson's disease, and glaucoma is crucial for developing preventive strategies.MethodsThis study utilized data from Genome-Wide Association Studies databases, focusing on European populations without gender restrictions.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester, United Kingdom.
Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.
Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.