Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantitative cardiovascular magnetic resonance (CMR) T1 mapping has shown promise for advanced tissue characterisation in routine clinical practise. However, T1 mapping is prone to motion artefacts, which affects its robustness and clinical interpretation. Current methods for motion correction on T1 mapping are model-driven with no guarantee on generalisability, limiting its widespread use. In contrast, emerging data-driven deep learning approaches have shown good performance in general image registration tasks. We propose MOCOnet, a convolutional neural network solution, for generalisable motion artefact correction in T1 maps. The network architecture employs U-Net for producing distance vector fields and utilises warping layers to apply deformation to the feature maps in a coarse-to-fine manner. Using the UK Biobank imaging dataset scanned at 1.5T, MOCOnet was trained on 1,536 mid-ventricular T1 maps (acquired using the ShMOLLI method) with motion artefacts, generated by a customised deformation procedure, and tested on a different set of 200 samples with a diverse range of motion. MOCOnet was compared to a well-validated baseline multi-modal image registration method. Motion reduction was visually assessed by 3 human experts, with motion scores ranging from 0% (strictly no motion) to 100% (very severe motion). MOCOnet achieved fast image registration (<1 second per T1 map) and successfully suppressed a wide range of motion artefacts. MOCOnet significantly reduced motion scores from 37.1±21.5 to 13.3±10.5 ( < 0.001), whereas the baseline method reduced it to 15.8±15.6 ( < 0.001). MOCOnet was significantly better than the baseline method in suppressing motion artefacts and more consistently ( = 0.007). MOCOnet demonstrated significantly better motion correction performance compared to a traditional image registration approach. Salvaging data affected by motion with robustness and in a time-efficient manner may enable better image quality and reliable images for immediate clinical interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649951PMC
http://dx.doi.org/10.3389/fcvm.2021.768245DOI Listing

Publication Analysis

Top Keywords

image registration
12
motion
10
motion correction
8
cardiovascular magnetic
8
magnetic resonance
8
convolutional neural
8
motion artefacts
8
method motion
8
motion moconet
8
moconet
5

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Autism is a neurodevelopmental condition associated with altered resting-state brain function. An increased excitation-inhibition ratio is discussed as a pathomechanism but in-vivo evidence of disturbed neurotransmission underlying functional alterations remains scarce. We compare local resting-state brain activity and neurotransmitter co-localizations between autism (N = 405, N = 395) and neurotypical controls (N = 473, N = 474) in two independent cohorts and correlate them with excitation-inhibition changes induced by glutamatergic (ketamine) and GABAergic (midazolam) medication.

View Article and Find Full Text PDF

The aim of the study was to validate a new method for semiautomatic subtraction of [Tc]Tc-sestamibi and [Tc]NaTcO SPECT 3-dimensional datasets using principal component analysis (PCA) against the results of parathyroid surgery and to compare its performance with an interactive method for visual comparison of images. We also sought to identify factors that affect the accuracy of lesion detection using the two methods. Scintigraphic data from [Tc]Tc-sestamibi and [Tc]NaTcO SPECT were analyzed using semiautomatic subtraction of the 2 registered datasets based on PCA applied to the region of interest including the thyroid and an interactive method for visual comparison of the 2 image datasets.

View Article and Find Full Text PDF

Objective: To determine the effect of a prepregnancy lifestyle intervention on glucose tolerance in people at higher risk of gestational diabetes mellitus.

Design: Single centre randomised controlled trial (BEFORE THE BEGINNING).

Setting: University hospital in Trondheim, Norway.

View Article and Find Full Text PDF

Background And Purpose: To date, no consensus guidelines have been published that systematically guide delineation of primary and nodal Clinical Target Volumes (CTVs) in patients who require post-operative radiotherapy (PORT) for mucosal Head and Neck squamous cell carcinoma (HNSCC). As a result, significant individual, institutional and national variation exists in the way that CTVs are delineated in the post-operative setting, leading to considerable heterogeneity in radiotherapy treatment.

Methods: A multi-disciplinary group of experts convened by the European Society for Radiotherapy and Oncology (ESTRO) set-out principles for the multi-disciplinary management of oral cavity squamous cell carcinoma (OCSCC).

View Article and Find Full Text PDF