Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How reproducible body patterns emerge from the collective activity of individual cells is a key question in developmental biology. Plant cells are encaged in their walls and unable to migrate. Morphogenesis thus relies on directional cell division, by precise positioning of division planes, and anisotropic cellular growth, mediated by regulated mechanical inhomogeneity of the walls. Both processes require the prior establishment of cell polarity, marked by the formation of polar domains at the plasma membrane, in a number of developmental contexts. The establishment of cell polarity involves biochemical cues, but increasing evidence suggests that mechanical forces also play a prominent instructive role. While evidence for mutual regulation between cell polarity and tissue mechanics is emerging, the nature of this bidirectional feedback remains unclear. Here we review the role of cell polarity at the interface of tissue mechanics and morphogenesis. We also aim to integrate biochemistry-centred insights with concepts derived from physics and physical chemistry. Lastly, we propose a set of questions that will help address the fundamental nature of cell polarization and its mechanistic basis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-021-01021-wDOI Listing

Publication Analysis

Top Keywords

cell polarity
20
tissue mechanics
12
mechanics morphogenesis
8
establishment cell
8
cell
6
polarity
5
plant cell
4
polarity nexus
4
nexus tissue
4
morphogenesis reproducible
4

Similar Publications

How compartments talk: Compartment coupling guides cochlear development.

PLoS Biol

September 2025

Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America.

Morphogens cooperate to guide development of the inner ear cochlea, but how do compartments communicate? A recent study in PLOS Biology reveals how planar cell polarity of individual cells is integrated across distinct regional compartments to ensure proper organ morphogenesis.

View Article and Find Full Text PDF

Biosensors for Detecting Small Rho GTPases: Monitoring Expression and Activation.

Bioessays

September 2025

MY Small G Protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia.

Advanced biosensing technologies, such as Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET), have enabled real-time, high-resolution tracking of Rho GTPase activity, surpassing traditional methods like pull-down assays. However, current biosensors mainly detect the GTP-bound active state through effector interactions, without directly measuring Rho GTPase expression or identifying related biomarkers of abnormal activation. Small Rho GTPases are essential molecular switches that regulate key cellular processes such as cytoskeletal organization, cell movement, polarity, vesicle trafficking, and the cell cycle.

View Article and Find Full Text PDF

Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).

View Article and Find Full Text PDF

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF

Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.

View Article and Find Full Text PDF