Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Yttrium iron garnet was obtained using four methods of synthesis. A modified citrate method and a modified citrate method with YIG (yttrium iron garnet, YFeO) nucleation were used. In two subsequent methods, YIP (yttrium iron perovskite, YFeO) and α-FeO obtained in the first case by the citrate method and in the second by precipitation of precursors with an ammonia solution were used as the input precursors for reaction sintering. Differential scanning calorimetry (DSC) measurements of the output powders obtained by all methods allowed to identify the effects observed during the temperature increase. Dilatometric measurements allowed to determine the changes in linear dimensions at individual stages of reaction sintering. In the case of materials obtained by the citrate method, two effects occur with the increasing temperature, the first of which corresponds to the reaction of the formation of yttrium iron perovskite (YIP), and the second is responsible for the reaction of the garnet (YIG) formation. However, in the case of heat treatment of the mixture of YIP and α-FeO, we observe only the effect responsible for the solid state reaction leading to the formation of yttrium iron garnet. The obtained materials were reaction sintered at temperatures of 1300 and 1400 °C. Only in the case of material obtained from a mixture of perovskite and iron(III) oxide obtained by ammonia precipitation at temperature of 1400 °C were densities achieved higher than 98% of the theoretical density. The use of Hot Isostatic Pressing (HIP) in the case of this material allowed to eliminate the remaining porosity and to obtain full density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658578PMC
http://dx.doi.org/10.3390/ma14237316DOI Listing

Publication Analysis

Top Keywords

yttrium iron
20
citrate method
16
iron garnet
12
modified citrate
8
iron perovskite
8
reaction sintering
8
formation yttrium
8
1400 °c
8
case material
8
reaction
6

Similar Publications

The difference in hydroxyl adsorption between Ni and Fe sites in NiFeOOH limits the efficient dual-site synergistic mechanism (DSSM) during oxygen evolution reaction (OER). Here, a novel needle-array electrodeposition is reported for the scalable and efficient fabrication of Co and Y co-doped NiFeOOH catalyst. It achieves an ultralow overpotential of 270 mV at 1 A cm with a small Tafel slope of 30.

View Article and Find Full Text PDF

Unidirectional perfect absorption induced by chiral coupling in spin-momentum locked waveguide magnonics.

Nat Commun

August 2025

Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, State Key Laboratory for Extreme Photonics and Instrumentation, School of Physics, Zhejiang University, Hangzhou, China.

Chiral coupling offers alternative avenues for controlling and exploiting light-matter interactions. We demonstrate that chiral coupling can be utilized to achieve unidirectional perfect absorption. In our experiments, chiral magnon-photon coupling is realized by coupling the magnon modes in yttrium iron garnet (YIG) spheres with spin-momentum-locked waveguide modes supported by spoof surface plasmon polaritons (SSPPs).

View Article and Find Full Text PDF

Optimization of Hot-Press Sintering for Cu-Sn Co-Doped YIG Ferrites: Microstructure, Dielectric Properties, and Magnetic Properties.

Materials (Basel)

August 2025

Laboratory for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China.

Yttrium iron garnet (YIG), as a core material in microwave devices, remains a key focus in materials science for performance optimization. In this study, YFeCuSnO samples were prepared via the solid-phase method with the co-doping of low-magnetic-anisotropy Cu and Sn, combined with hot-press sintering under different conditions. Systematic analyses revealed that hot-press sintering optimized the microstructure, reduced porosity, and improved the compactness to 5.

View Article and Find Full Text PDF

Observation and Control of Chiral Spin Frustration in BiYIG Thin Films.

Phys Rev Lett

August 2025

Beihang University, Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beijing 100191, China.

Chiral interactions within magnetic layers stabilize the formation of noncollinear spin textures, which can be leveraged to design devices with tailored magnetization dynamics. Here, we introduce chiral spin frustration in which energetically degenerate magnetic states frustrate the Dzyaloshinskii-Moriya interaction. We demonstrate magnon-driven switching of the chirally frustrated spin states in Bi-substituted yttrium iron garnet thin films.

View Article and Find Full Text PDF

Reconfigurable control of coherence, dissipation, and nonreciprocity in cavity magnonics.

Sci Rep

August 2025

National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Precise control of coupling strength, damping rate and nonreciprocity in photon-magnon systems is essential for advancing hybrid quantum technologies, including reconfigurable microwave components and quantum transducers. Here, we demonstrate magnetic field angle-dependent control of photon-magnon coupling and magnon dissipation in a cross-shaped microwave cavity supporting a spatially nonuniform radio-frequency (rf) magnetic field. By rotating the external magnetic field angle θ relative to the normal of the transmission line within the cavity plane, we simultaneously control the coherent coupling strength [Formula: see text], the ferromagnetic resonance (FMR) damping rate, and the system's nonreciprocal response.

View Article and Find Full Text PDF