Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer stem-like cells mediate tumor initiation, progression, and therapy resistance; however, their identification and selective eradication remain challenging. Herein, we analyze the metabolic dependencies of glioblastoma stem-like cells (GSCs) with high-resolution proton nuclear magnetic resonance (H-NMR) spectroscopy. We stratify our in vitro GSC models into two subtypes primarily based on their relative amount of glutamine in relationship to glutamate (Gln/Glu). Gln/Glu GSCs were found to be resistant to glutamine deprivation, whereas Gln/Glu GSCs respond with significantly decreased in vitro clonogenicity and impaired cell growth. The starvation resistance appeared to be mediated by an increased expression of the glutamate/cystine antiporter SLC7A11/xCT and efficient cellular clearance of reactive oxygen species (ROS). Moreover, we were able to directly correlate xCT-dependent starvation resistance and high Gln/Glu ratios with in vitro clonogenicity, since targeted differentiation of GSCs with bone morphogenic protein 4 (BMP4) impaired xCT expression, decreased the Gln/Glu ratio, and restored the sensitivity to glutamine starvation. Moreover, significantly reduced levels of the oncometabolites lactate (Lac), phosphocholine (PC), total choline (tCho), myo-inositol (Myo-I), and glycine (Gly) were observed in differentiated GSCs. Furthermore, we found a strong association between high Gln/Glu ratios and increased expression of Zinc finger E-box-binding homeobox 1 (ZEB1) and xCT in primary GBM tumor tissues. Our analyses suggest that the inhibition of xCT represents a potential therapeutic target in glioblastoma; thus, we could further extend its importance in GSC biology and stress responses. We also propose that monitoring of the intracellular Gln/Glu ratio can be used to predict nutrient stress resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672273PMC
http://dx.doi.org/10.3390/cancers13236001DOI Listing

Publication Analysis

Top Keywords

stem-like cells
12
glioblastoma stem-like
8
cells gscs
8
gln/glu gscs
8
vitro clonogenicity
8
starvation resistance
8
increased expression
8
high gln/glu
8
gln/glu ratios
8
gln/glu ratio
8

Similar Publications

Background: Recent studies have highlighted that one of the main drivers for metastatic formation and resistance to the therapy are circulating tumor cells (CTCs) and cancer stem-like cells (CSCs). Measuring the CTCs has emerged as a non-invasive procedure for selecting the patients with higher risk of progression/relapse. However, still there are no methods enabling the identification of stem-like phenotype of the CTCs.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) therapies are the most recommended first-line treatment for wild-type unresectable metastatic colorectal cancer (CRC) according to the European Society for Medical Oncology guidelines. However, primary resistance renders this treatment ineffective for almost 40% of patients. Our previous work identified Aurora kinase A (AURKA) as a key resistance driver through non-canonical, Hippo-independent Yes-associated protein 1 (YAP1) activation.

View Article and Find Full Text PDF

Mesenchymal progenitor cells in perivascular niches: forerunners of mesenchymal stem cells and players in tissue scarring and regeneration.

Vascul Pharmacol

September 2025

Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA, Los Angeles, CA 90095, USA; Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK. Electronic address:

The walls of all embryonic, foetal, and adult blood vessels contain mesodermal progenitors, distributed as pericytes in capillaries and micro vessels, and fibroblastic cells in the tunica adventitia of larger veins and arteries. Following dissociation, selection by flow cytometry, and culture, those perivascular cells turn into bona fide mesenchymal stem cells of which they possess all attributes. In vivo, the adventitial cellular niche supports several spatially-organized subsets of mesodermal progenitors biased toward either osteo-, adipo-, or fibrogenesis, and dominated by more primitive, multi-lineage stem-like cells.

View Article and Find Full Text PDF

Resolving leukemic stem cell heterogeneity and plasticity with single-cell multiomics.

Semin Hematol

August 2025

Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH), Heidelberg, Germany.

Acute myeloid leukemia (AML) is an aggressive blood cancer in which disease initiation and relapse are driven by leukemic cells with stem-like properties, known as leukemic stem cells (LSCs). The LSC compartment is highly heterogenous and this contributes to differences in therapy response. This heterogeneity is determined by genetic and nongenetic factors including somatic mutations, the cell of origin, transcriptional and epigenetic states as well as phenotypic plasticity.

View Article and Find Full Text PDF

Erratum to "A highly potent small-molecule antagonist of exportin-1 selectively eliminates CD44 CD24- enriched breast cancer stem-like cells" [Drug Resist. Updates 66 (2023) 100903].

Drug Resist Updat

September 2025

Department of Oncology, Cancer Stem Cell and Translational Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang 110004, China; School of Bioengineering, Dalian University of Technology, Dalian

View Article and Find Full Text PDF