A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Decoding the Double/Multiple Hysteresis Loops in Antiferroelectric Materials. | LitMetric

Decoding the Double/Multiple Hysteresis Loops in Antiferroelectric Materials.

ACS Appl Mater Interfaces

State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antiferroelectric materials has become one of the most promising candidates for pulsed power capacitors. The polarization versus electric-field hysteresis loop is the key electrical property for evaluating their energy-storage performance. Here, we applied in situ biasing transmission electron microscopy to decode two representative energy-storage behaviors-namely, multiple and double hysteresis loops-in (Pb,La)(Zr,Sn,Ti)O system. Simultaneous structural examination and domain/defects observation establish a direct relationship between phase transitions and hysteresis loops. Sustaining a smaller period of modulated structure to a certain applied electric field and then undergoing additional transitions among varying antiferroelectric phases with increasing modulation periods before the final antiferroelectric-ferroelectric transition leads to the favorable multiple-loop configuration that realizes a high energy-storage performance. Such phenomenon is described by a model in terms of defect-driven phase transition. The distinctive mechanisms of multiple phase transition will inspire future composition-design for high switch-fielding antiferroelectric materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c19459DOI Listing

Publication Analysis

Top Keywords

antiferroelectric materials
12
hysteresis loops
8
energy-storage performance
8
phase transition
8
decoding double/multiple
4
hysteresis
4
double/multiple hysteresis
4
antiferroelectric
4
loops antiferroelectric
4
materials antiferroelectric
4

Similar Publications