Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dendritic cell (DC) activation is characterized by sustained commitment to glycolysis that is a requirement for survival in DC subsets that express inducible NO synthase () due to NO-mediated inhibition of mitochondrial respiration. This phenomenon primarily has been studied in DCs from the classic laboratory inbred mouse strain C57BL/6J (B6) mice, where DCs experience a loss of mitochondrial function due to NO accumulation. To assess the conservation of NO-driven metabolic regulation in DCs, we compared B6 mice to the wild-derived genetically divergent PWD/PhJ (PWD) strain. We show preserved mitochondrial respiration and enhanced postactivation survival due to attenuated NO production in LPS-stimulated PWD DCs phenocopying human monocyte-derived DCs. To genetically map this phenotype, we used a congenic mouse strain (B6.PWD-Chr11.2) that carries a PWD-derived portion of chromosome 11, including , on a B6 background. B6.PWD-Chr11.2 DCs show preserved mitochondrial function and produce lower NO levels than B6 DCs. We demonstrate that activated B6.PWD-Chr11.2 DCs maintain mitochondrial respiration and TCA cycle carbon flux, compared with B6 DCs. However, reduced NO production by the PWD allele results in impaired cellular control of replication. These studies establish a natural genetic model for restrained endogenous NO production to investigate the contribution of NO in regulating the interplay between DC metabolism and immune function. These findings suggest that reported differences between human and murine DCs may be an artifact of the limited genetic diversity of the mouse models used, underscoring the need for mouse genetic diversity in immunology research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702458PMC
http://dx.doi.org/10.4049/jimmunol.2100375DOI Listing

Publication Analysis

Top Keywords

mitochondrial respiration
12
dcs
10
mouse strain
8
mitochondrial function
8
preserved mitochondrial
8
b6pwd-chr112 dcs
8
genetic diversity
8
mitochondrial
6
divergent genetic
4
genetic regulation
4

Similar Publications

Hypertriglyceridemia impairs HDL functionality, promotes macrophage metabolic activation and exacerbates antigen-induced rheumatoid arthritis in mice which can be reversed by fenofibrate treatment.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Laboratory of Biochemistry, University of Crete Medical School and Gene Regulation and Genomics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete, Greece. Electronic address:

Rheumatoid arthritis (RA) is associated with increased cardiovascular disease (CVD) risk, partly attributed to altered lipid metabolism. Apolipoprotein C-III (apoC-III), a key regulator of triglyceride-rich lipoproteins in the plasma, has been implicated in both dyslipidemia and inflammation. In this study, we investigated the role of hypertriglyceridemia in RA using a transgenic mouse model overexpressing the human apoC-III gene (apoC-III Tg).

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.

View Article and Find Full Text PDF

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF