98%
921
2 minutes
20
Riparian forest buffers have multiple benefits for biodiversity and ecosystem services in both freshwater and terrestrial habitats but are rarely implemented in water ecosystem management, partly reflecting the lack of information on the effectiveness of this measure. In this context, social learning is valuable to inform stakeholders of the efficacy of riparian vegetation in mitigating stream degradation. We aim to develop a Bayesian belief network (BBN) model for application as a learning tool to simulate and assess the reach- and segment-scale effects of riparian vegetation properties and land use on instream invertebrates. We surveyed reach-scale riparian conditions, extracted segment-scale riparian and subcatchment land use information from geographic information system data, and collected macroinvertebrate samples from four catchments in Europe (Belgium, Norway, Romania, and Sweden). We modelled the ecological condition based on the Average Score Per Taxon (ASPT) index, a macroinvertebrate-based index widely used in European bioassessment, as a function of different riparian variables using the BBN modelling approach. The results of the model simulations provided insights into the usefulness of riparian vegetation attributes in enhancing the ecological condition, with reach-scale riparian vegetation quality associated with the strongest improvements in ecological status. Specifically, reach-scale buffer vegetation of score 3 (i.e. moderate quality) generally results in the highest probability of a good ASPT score (99-100%). In contrast, a site with a narrow width of riparian trees and a small area of trees with reach-scale buffer vegetation of score 1 (i.e. low quality) predicts a high probability of a bad ASPT score (74%). The strengths of the BBN model are the ease of interpretation, fast simulation, ability to explicitly indicate uncertainty in model outcomes, and interactivity. These merits point to the potential use of the BBN model in workshop activities to stimulate key learning processes that help inform the management of riparian zones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152146 | DOI Listing |
Sci Total Environ
September 2025
Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia.
Human interventions, such as vegetation removal and engineering structures, can significantly alter river dynamics, often increasing erosion and flood risk. While many studies have examined the role of vegetation, flood regimes, and channel geometry in river morphodynamics, long-term, reach-scale analyses of channel response to abrupt riparian vegetation removal remain scarce. This study examines channel changes in the meandering Orljava River, Croatia, over the past 55 years, focusing on its response to floods before and after anthropogenic removal of riparian vegetation in 2011.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2025
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
The Anqing-Wuhu mainstem segment in the middle and lower reaches of the Yangtze River serves as a critical habitat for diverse species, where the ecological quality of floodplain wetlands directly governs the stability of the entire ecosystem. Utilizing 30-meter resolution Landsat satellite imagery from 1994 to 2022, we classified the floodplain wetlands in the Anqing-Wuhu mainstem segment in the middle and lower reaches of the Yangtze River using fractional vegetation coverage (FVC). Through dynamic degree analysis and transition matrices method, we quantified vegetation cover transitions across different FVC tiers and analyzed their spatiotemporal variations.
View Article and Find Full Text PDFPLoS One
August 2025
Graduate Program in Ecology, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, Brazil.
One of the greatest tragedies in Brazilian mining history occurred in November 2015 in Mariana, Minas Gerais state, when a dam from the mining company Samarco was breached. Millions of mine tailings from this upstream embankment were dumped over the Doce River basin, impacting an area of approximately 1469 ha of riparian vegetation. Our objective was to experimentally investigate whether plant recruitment and establishment are impaired in areas affected by tailings six years after the deposition.
View Article and Find Full Text PDFEnviron Monit Assess
August 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
The Yalong River Basin serves as a critical ecological barrier in the upper reaches of the Yangtze River, with its hydropower development playing a key role in China's "West-to-East Power Transmission" strategy. Utilizing multi-source remote sensing and meteorological data from 2000 to 2022, this study integrates partial correlation analysis, structural equation modeling (SEM), and generalized linear models (GLM) to quantify the impacts of cascade hydropower dam (CHD) construction on riparian vegetation (RV) dynamics and its relationship with key climatic factors, including precipitation, soil moisture (SM), temperature, and vapor pressure deficit (VPD). The results indicate a significant increasing trend in riparian vegetation following hydropower dam construction, with the average NDVI increasing from 0.
View Article and Find Full Text PDFArch Environ Contam Toxicol
August 2025
iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829, Landau, Germany.
Water scarcity can intensify streamflow reduction, alter hydromorphology, increase chemical pollution, and disrupt resource exchange between aquatic and terrestrial ecosystems. However, the effects of streamflow reduction on pesticide concentrations in sediment, and how these changes influence aquatic insect emergence and riparian spider communities, remain poorly understood. We conducted a 39-day mesocosm experiment in Southwest Germany using 12 artificial stream mesocosm with adjacent riparian areas, randomly assigned to low-flow (0.
View Article and Find Full Text PDF