A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of exogenous additives on wheat Cd accumulation, soil Cd availability and physicochemical properties in Cd-contaminated agricultural soils: A meta-analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) contamination in wheat is a serious issue. The application of exogenous additives can effectively inhibit Cd bioavailability in soil and decrease Cd accumulation in wheat. However, a comprehensive and quantitative analysis of how additives affect wheat Cd accumulation, wheat yield, soil Cd availability, and soil properties is lacking. We conducted a meta-analysis of 65 peer-reviewed papers published before April 2021 to investigate how additives application affects Cd accumulation in wheat and soil Cd availability. The results indicated that most additives application decreased the diethylenetriaminepentaacetic acid extractable-Cd content (5.27-56.33%) in the soil, and wheat grain and root Cd concentrations (0.03-129.87% and 0.42-52.84%, respectively); the pH values of wheat-grown soil and the properties of the additives affected the reduction percentage. Overall, most wheat-grown soils were calcareous soil (42 peer-reviewed papers); in calcareous soil, the magnitude of the Cd reduction in wheat grain was the highest under treatments with clay minerals (129.87%) due to clay modification, followed by composite (75.36%) and phosphorus materials (73.55%). Moreover, most additives application increased wheat grain yield by 0.03-51.84%, which was attributed to the positive effects of additives on wheat antioxidant capacity, photosynthesis, respiration, and nutrient uptake. Additives application increased the pH value of acidic wheat soil, and positively affected the electrical conductivity, cation exchange capacity, and organic carbon content of the wheat grown soil. In addition, regression analysis showed that soil available Cd was negatively correlated with the pH value with additives application in acidic soil (r = 0.43), while a non-significant correlation was observed in neutral and calcareous wheat soils (r = 0.017 and 0.016, respectively). The results of this study can assist in the selection, modification, and utilisation of additives to remediate Cd-contaminated wheat soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152090DOI Listing

Publication Analysis

Top Keywords

additives application
20
wheat
14
soil
13
soil availability
12
accumulation wheat
12
wheat grain
12
additives
11
exogenous additives
8
additives wheat
8
wheat accumulation
8

Similar Publications