A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Capturing the nature of events and event context using hierarchical event descriptors (HED). | LitMetric

Capturing the nature of events and event context using hierarchical event descriptors (HED).

Neuroimage

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States.

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925904PMC
http://dx.doi.org/10.1016/j.neuroimage.2021.118766DOI Listing

Publication Analysis

Top Keywords

event
8
hierarchical event
8
event descriptors
8
meeg neuroimaging
8
event annotation
8
event design
8
wakeman henson
8
data
5
neuroimaging
5
annotation
5

Similar Publications