98%
921
2 minutes
20
The present study was conducted to determine exact location where the acrosome reaction of fertilizing spermatozoa begins in the oviduct of the Chinese hamster. Unlike spermatozoa of other rodent species, Chinese hamster spermatozoa did not spontaneously undergo the acrosome reaction in fertilization-supporting media. In naturally mated females, spermatozoa in the uterus had intact acrosomes, whereas those in the lower oviductal isthmus had visibly thin acrosomal caps. The acrosomal cap was lost when spermatozoa passed through the cumulus oophorus. Thus, Chinese hamster spermatozoa begin the acrosome reaction in the lower isthmus and complete it in the cumulus oophorus. The mucosal epithelium of the oviductal isthmus released many "transparent" vesicles into the lumen, was very fragile and readily sloughed off by rough handling or rapid flushing with medium. Globular materials that oozed out of the dissected oviduct were most likely mucosa cells destroyed by rough handling. Although the oviducts of Chinese hamsters may be exceptionally delicate, this observation nevertheless warns us to cautiously handle the oviducts of any species when studying oviduct secretions that could be involved in inducing capacitation and the acrosome reaction of spermatozoa within the female genital tract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.23547 | DOI Listing |
Antiviral Res
September 2025
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of E
Feline interferon-ω2 (FeIFN-ω2) holds potential as a therapeutic agent against feline viral infections. However, its clinical application is limited by rapid clearance and suboptimal antiviral effectiveness. Thus, in this study, an Fc-fused construct, FeIFN-ω2-Fc, was engineered to improve antiviral potency and pharmacokinetic properties both in vitro and in vivo.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA. Electronic address:
Taxol is an antitumor agent that arrests cells in the late G2 and M phases of the cell cycle. Our previous research demonstrated that PARP inhibition enhances Taxol-induced cell death via oxidative stress and free radical production. In this study, we hypothesized that the inhibiting DNA damage response (DDR) kinases would further increase Taxol cytotoxicity by impairing the repair of Taxol-induced DNA damage.
View Article and Find Full Text PDFBiotechnol J
September 2025
Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
Hepatitis C Virus (HCV) is a pervasive bloodborne virus and the leading cause of chronic liver disease and cancer. Thus, the development of an HCV vaccine is of great importance. Prior work has developed candidate vaccines, including more potent glycoengineered viral proteins and secreted forms of the E1E2 envelope heterodimer (sE1E2).
View Article and Find Full Text PDFJ Biosci Bioeng
September 2025
Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan.
Antibody production in Chinese hamster ovary (CHO) cell culture was enhanced by supplementing the culture medium with barley shochu distillation by-product supernatant (BX2). To predict antibody production following BX2 addition, fed-batch culture experiments were conducted under varying BX2 conditions using a response surface methodology. BX2 supplementation was predicted to improve antibody production by 138 %, 146 %, 120 %, and 240 % in IgG-producing CHO-MK1, CHO-MK2, CHO-DG44, and Fc-fusion protein-producing CHO-DG44 cells, respectively, compared to controls without BX2.
View Article and Find Full Text PDFBiotechnol J
September 2025
Cell Engineering Group, NIBRT, Dublin, Ireland.
Recent bulk analysis of Chinese hamster ovary (CHO) cell mitochondrial DNA revealed widespread heteroplasmy across cell lines and even within clones of the same parental host. To address this, we applied our previously developed single-cell mtDNA sequencing (scmtDNAseq) method to 84 single CHO cells. We identified widespread intercellular heteroplasmy across the CHO cell population and predicted possible phenotypic impacts.
View Article and Find Full Text PDF