Publications by authors named "Frances Rocamora"

Hepatitis C Virus (HCV) is a pervasive bloodborne virus and the leading cause of chronic liver disease and cancer. Thus, the development of an HCV vaccine is of great importance. Prior work has developed candidate vaccines, including more potent glycoengineered viral proteins and secreted forms of the E1E2 envelope heterodimer (sE1E2).

View Article and Find Full Text PDF

Recombinant proteins, in particular monoclonal antibodies and related molecules, have become dominant therapeutics. As they are produced in mammalian cells, they require the concerted function of hundreds of host cell proteins in the protein secretion pathway. However, the comprehensive set of host cell machinery involved remains unclear.

View Article and Find Full Text PDF

Recombinant proteins, in particular monoclonal antibodies and related molecules, have become dominant therapeutics. As they are produced in mammalian cells, they require the concerted function of hundreds of host cell proteins in the protein secretion pathway. However, the comprehensive set of host cell machinery involved remains unclear.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) is a bloodborne virus that affects 57 million people globally with infections that can often go unnoticed, and it is the leading cause of chronic liver disease and cancer. Thus, development of an HCV vaccine is a major medical and public health concern. While prior work has developed secreted E1E2 (sE1E2) protein vaccine candidates, efforts to express it recombinantly in Chinese hamster ovary (CHO) cells have resulted in very low titers.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on identifying genetic mutations in malaria parasites that confer drug resistance, essential for improving surveillance and target discovery in malaria treatment.
  • Researchers analyzed the genomes of 724 clones resistant to 118 different antimalarial compounds, uncovering 1,448 variants in 128 frequently mutated genes related to multidrug resistance.
  • The findings suggest that in vitro selected mutations are more diverse and significant than naturally occurring ones, providing insights into how these mutations can inform predictions of drug resistance in similar pathogens.
View Article and Find Full Text PDF

Our previous work identified a series of 12 xanthoquinodin analogues and 2 emodin-dianthrones with broad-spectrum activities against , , , and . Analyses conducted in this study revealed that the most active analogue, xanthoquinodin A1, also inhibits tachyzoites and the liver stage of , with no cross-resistance to the known antimalarial targets PfACS, PfCARL, PfPI4K, or DHODH. In , inhibition occurs prior to multinucleation and induces parasite death following 12 h of compound exposure.

View Article and Find Full Text PDF

Alpha-1-antitrypsin (A1AT) is a multifunctional, clinically important, high value therapeutic glycoprotein that can be used for the treatment of many diseases such as alpha-1-antitrypsin deficiency, diabetes, graft-versus-host-disease, cystic fibrosis and various viral infections. Currently, the only FDA-approved treatment for A1AT disorders is intravenous augmentation therapy with human plasma-derived A1AT. In addition to its limited supply, this approach poses a risk of infection transmission, since it uses therapeutic A1AT harvested from donors.

View Article and Find Full Text PDF

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • The study discovered 52 antiplasmodial peptaibols from fungi and focused on understanding the action of the most effective one, HZ NPDG-I, through various assays.
  • HZ NPDG-I and two other peptaibols were found to disrupt digestive vacuole (DV) function in parasites, leading to changes in DV pH and permeability, as well as the ability to create ion channels.
  • HZ NPDG-I did not show cross-resistance with existing drugs, though resistant strains developed mutations in a specific transporter gene, pfmdr1, indicating varying sensitivity to different peptaibol analogs.
View Article and Find Full Text PDF
Article Synopsis
  • Therapeutic proteins have been successful in treating various diseases, with glycosylation being a critical quality feature that affects their properties and effectiveness.
  • Optimizing the glycosylation process can enhance the safety and efficacy of both existing and developing protein-based drugs.
  • The review explores how glycan structure variations affect drug performance and discusses implications for advanced therapies like T cell-based cancer treatment and gene therapy.
View Article and Find Full Text PDF

Antimalarial drug discovery has until recently been driven by high-throughput phenotypic cellular screening, allowing millions of compounds to be assayed and delivering clinical drug candidates. In this review, we will focus on target-based approaches, describing recent advances in our understanding of druggable targets in the malaria parasite. Targeting multiple stages of the Plasmodium lifecycle, rather than just the clinically symptomatic asexual blood stage, has become a requirement for new antimalarial medicines, and we link pharmacological data clearly to the parasite stages to which it applies.

View Article and Find Full Text PDF

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the cytoplasmic isoleucyl tRNA synthetase (cIRS).

View Article and Find Full Text PDF

Here, we present remarkable epoxyketone-based proteasome inhibitors with low nanomolar in vitro potency for blood-stage Plasmodium falciparum and low cytotoxicity for human cells. Our best compound has more than 2,000-fold greater selectivity for erythrocytic-stage P. falciparum over HepG2 and H460 cells, which is largely driven by the accommodation of the parasite proteasome for a D-amino acid in the P3 position and the preference for a difluorobenzyl group in the P1 position.

View Article and Find Full Text PDF

The prospect of eradicating malaria continues to be challenging in the face of increasing parasite resistance to antimalarial drugs so that novel antimalarials active against asexual, sexual, and liver-stage malaria parasites are urgently needed. In addition, new antimalarials need to be affordable and available to those most in need and, bearing in mind climate change, should ideally be sustainable. The West African climbing shrub is used traditionally for the treatment of malaria; its principal alkaloid, cryptolepine (), has been shown to have antimalarial properties, and the synthetic analogue 2,7-dibromocryptolepine () is of interest as a lead toward new antimalarial agents.

View Article and Find Full Text PDF

In malaria, chemical genetics is a powerful method for assigning function to uncharacterized genes. MMV085203 and GNF-Pf-3600 are two structurally related napthoquinone phenotypic screening hits that kill both blood- and sexual-stage parasites in the low nanomolar to low micromolar range. In order to understand their mechanism of action, parasites from two different genetic backgrounds were exposed to sublethal concentrations of MMV085203 and GNF-Pf-3600 until resistance emerged.

View Article and Find Full Text PDF

Although the last two decades have seen a substantial decline in malaria incidence and mortality due to the use of insecticide-treated bed nets and artemisinin combination therapy, the threat of drug resistance is a constant obstacle to sustainable malaria control. Given that patients can die quickly from this disease, public health officials and doctors need to understand whether drug resistance exists in the parasite population, as well as how prevalent it is so they can make informed decisions about treatment. As testing for drug efficacy before providing treatment to malaria patients is impractical, researchers need molecular markers of resistance that can be more readily tracked in parasite populations.

View Article and Find Full Text PDF

A promising new compound class for treating human malaria is the imidazolopiperazines (IZP) class. IZP compounds KAF156 (Ganaplacide) and GNF179 are effective against Plasmodium symptomatic asexual blood-stage infections, and are able to prevent transmission and block infection in animal models. But despite the identification of resistance mechanisms in P.

View Article and Find Full Text PDF

The predisposition of parasites acquiring artemisinin resistance still remains unclear beyond the mutations in Pfk13 gene and modulation of the unfolded protein response pathway. To explore the chain of casualty underlying artemisinin resistance, we reanalyze 773 P. falciparum isolates from TRACI-study integrating TWAS, GWAS, and eQTL analyses.

View Article and Find Full Text PDF

Due to their remarkable parasitocidal activity, artemisinins represent the key components of first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines were derived from two clones of the 3D7 strain of P.

View Article and Find Full Text PDF