Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Periodontitis is a common condition characterized by an exacerbated pro-inflammatory response, which leads to tissue destruction and, ultimately, alveolar bone loss. In this pilot study, we assess the microbiota composition and cytokine profile changes in patients with stage III/IV, grade B/C periodontitis, specifically by comparing healthy and diseased sites in the same oral cavity. Overall, we found that microbiota architecture was significantly disrupted between diseased and healthy sites, and that the clustering was driven, in part, by the increased relative abundances of Synergistetes in diseased sites, as well as the increased abundances of Firmicutes in healthy sites. We also observed that diseased sites were enriched in Synergistetes, TM7, SR1, Spirochaetes, Bacteroidetes and Fusobacteria, and depleted in Firmicutes, Proteobacteria, Tenericutes and Actinobacteria compared to healthy sites. We found that Interleukin-1b, Interleukin-4, Interleukin-10, and Interleukin-17A were significantly overexpressed in diseased sites, whereas Interleukin-6 and TNF-alpha do not differ significantly between healthy and diseased sites. Here, we observed concomitant changes in the subgingival plaque microbiota and cytokines profile, suggesting that this combined alteration could contribute to the pathobiology of periodontitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618247PMC
http://dx.doi.org/10.3390/microorganisms9112364DOI Listing

Publication Analysis

Top Keywords

diseased sites
24
healthy diseased
12
healthy sites
12
sites
9
microbiota cytokines
8
cytokines profile
8
profile changes
8
changes patients
8
pilot study
8
comparing healthy
8

Similar Publications

Two major protein recycling pathways have emerged as key regulators of enduring forms of synaptic plasticity, such as long-term potentiation (LTP), yet how these pathways are recruited during plasticity is unknown. Phosphatidylinositol-3-phosphate (PI(3)P) is a key regulator of endosomal trafficking and alterations in this lipid have been linked to neurodegeneration. Here, using primary hippocampal neurons, we demonstrate dynamic PI(3)P synthesis during chemical induction of LTP (cLTP), which drives coordinate recruitment of the SNX17-Retriever and SNX27-Retromer pathways to endosomes and synaptic sites.

View Article and Find Full Text PDF

The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).

View Article and Find Full Text PDF

complex (MABC) is notoriously difficult to treat. Current guidelines suggest a 14-day-long incubation and/or sequencing of to detect inducible macrolide resistance. We assessed whether the evolution of minimum inhibitory concentrations (MICs) can reliably predict inducible macrolide resistance and clinical outcomes of extrapulmonary MABC infections.

View Article and Find Full Text PDF

Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.

View Article and Find Full Text PDF

The stems of , an important vegetable in China, are targeted by the pathogen , triggering a response through the mitogen-activated protein kinase (MAPK) signalling pathway. To investigate the characteristics and the role of MAPK gene family in the biological stress response, a bioinformatics-based analysis was performed, and the expression patterns of and MAPK-infection pathway-related genes were detected in male plants inoculated with . Twenty-five were identified and divided into four subgroups A, B, C and D: carried a conserved TEY motif, while D had a conserved TDY motif.

View Article and Find Full Text PDF