Investigating the Structural Dynamics and Crack Propagation Behavior under Uniform and Non-Uniform Temperature Conditions.

Materials (Basel)

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The robustness and stability of the system depend on structural integrity. This stability is, however, compromised by aging, wear and tear, overloads, and environmental factors. A study of vibration and fatigue cracking for structural health monitoring is one of the core research areas in recent times. In this paper, the structural dynamics and fatigue crack propagation behavior when subjected to thermal and mechanical loads were studied. It investigates the modal parameters of uncracked and various cracked specimens under uniform and non-uniform temperature conditions. The analytical model was validated by experimental and numerical approaches. The analysis was evaluated by considering different heating rates to attain the required temperatures. The heating rates were controlled by a proportional-integral-derivative (PID) temperature controller. It showed that a slow heating rate required an ample amount of time but more accurate results than quick heating. This suggested that the heating rate can cause variation in the structural response, especially at elevated temperatures. A small variation in modal parameters was also observed when the applied uniform temperatures were changed to non-uniform temperatures. This study substantiates the fatigue crack propagation behavior of pre-seeded cracks. The results show that propagated cracking depends on applied temperatures and associated mass. The appearance of double crack fronts and multiple cracks were observed. The appearance of multiple cracks seems to be due to the selection of the pre-seeded crack shape. Hence, the real cracks and pre-seeded cracks are distinct and need careful consideration in fatigue crack propagation analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619597PMC
http://dx.doi.org/10.3390/ma14227071DOI Listing

Publication Analysis

Top Keywords

crack propagation
16
propagation behavior
12
fatigue crack
12
structural dynamics
8
uniform non-uniform
8
non-uniform temperature
8
temperature conditions
8
modal parameters
8
heating rates
8
heating rate
8

Similar Publications

The presence of internal cracks in rocks within underground engineering environments has significantly compromised their stability, and groundwater has substantially influenced the mechanical properties and fracture evolution of rock masses. In this study, sandstone specimens containing three parallel cracks under saturated water conditions were investigated. Using uniaxial compression tests and digital image correlation (DIC) technology, the influence of the inclination angles of the three parallel cracks on the mechanical properties and fracture evolution of rocks under saturated water conditions was examined.

View Article and Find Full Text PDF

This study applied Raman spectroscopy (RS) to ex vivo human cadaveric femoral mid-diaphysis cortical bone specimens ( = 118 donors; age range 21-101 years) to predict fracture toughness properties via machine learning (ML) models. Spectral features, together with demographic variables (age, sex) and structural parameters (cortical porosity, volumetric bone mineral density), were fed into support vector regression (SVR), extreme tree regression (ETR), extreme gradient boosting (XGB), and ensemble models to predict fracture-toughness metrics such as crack-initiation toughness (K) and energy-to-fracture (J-integral). Feature selection was based on Raman-derived mineral and organic matrix parameters, such as νPhosphate (PO)/CH-wag, νPO/Amide I, and others, to capture the complex composition of bone.

View Article and Find Full Text PDF

High-resolution DIC analysis of in situ strain and crack propagation in coated AZ31 magnesium alloys under mechanical loading.

J Mater Sci

August 2025

Faculty of Science and Health, School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT UK.

Unlabelled: Biodegradable magnesium (Mg) alloys are promising for various biomedical applications but their susceptibility to corrosion poses significant challenges. This study systematically examines the microstructural integrity and failure mechanisms of electrochemically deposited phosphate- and fluorine-rich coatings on AZ31 Mg alloy subjected to three-point bending (3 PB) in both non-corrosive and physiological (HBSS) environments. High-resolution digital image correlation (HR-DIC) combined with scanning electron microscopy (SEM) enables in situ visualization and quantitative analysis of crack initiation, evolution, and propagation within the coatings.

View Article and Find Full Text PDF

Supermartensitic stainless steels (SMSS) reinforced with a percolated boride network offer exceptional corrosion and wear resistance, making them well-suited for oil and gas applications. However, hydrogen embrittlement (HE) poses significant challenges in offshore environments. This study examines HE in SMSS with boron additions ranging from 0.

View Article and Find Full Text PDF

To investigate the failure behavior and cracking mechanisms in surrounding rock, a true triaxial experimental system and digital imaging were employed to perform compression tests on sandstone specimens containing preexisting flaws. Experimental results revealed the propagation characteristics of microfractures under stress concentration conditions and their correlation with failure patterns. Furthermore, a fracture propagation model was implemented to evaluate the susceptibility of surrounding rock to failure.

View Article and Find Full Text PDF