Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Immune-mediated inflammatory processes and oxidative stress are involved in the aetiopathogenesis of bipolar disorder (BD) and weight-associated comorbidities. Tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) along the kynurenine axis concomitant with a pro-inflammatory state was found to be more active in BD, and associated with overweight/obesity. This study aimed to investigate tryptophan metabolism in BD compared to controls (C), stratified by weight classes, in a longitudinal setting, dependent on the incidence of BD episodes. Peripheral tryptophan, kynurenine, and neopterin were assessed in the serum of 226 BD individuals and 142 C. Three samples in a longitudinal assessment were used for 75 BD individuals. Results showed a higher kynurenine/tryptophan in both BD compared to C and overweight compared to normal weight persons. Levels remained stable over time. In the longitudinal course, no differences were found between individuals who were constantly euthymic or not, or who had an illness episode or had none. Findings indicate that tryptophan, kynurenine, and IDO-1 activity may play a role in pathophysiology in BD but are not necessarily associated with clinical manifestations. Accelerated tryptophan breakdown along the kynurenine axis may be facilitated by being overweight. This may increase the risk of accumulation of neurotoxic metabolites, impacting BD symptomatology, cognition, and somatic comorbidities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8615217PMC
http://dx.doi.org/10.3390/antiox10111795DOI Listing

Publication Analysis

Top Keywords

tryptophan metabolism
8
bipolar disorder
8
longitudinal setting
8
tryptophan breakdown
8
kynurenine axis
8
tryptophan kynurenine
8
tryptophan
6
metabolism bipolar
4
longitudinal
4
disorder longitudinal
4

Similar Publications

HIV-induced gut microbiota dysbiosis perpetuates mucosal barrier disruption and systemic inflammation despite antiretroviral therapy (ART), creating a tumor-permissive microenvironment. This review synthesizes evidence linking HIV-associated microbial alterations to oncogenesis through three convergent metabolic axes: (1) butyrate deficiency impairing epithelial energy metabolism and anti-tumor immunity; (2) tryptophan metabolism dysregulation compromising gut barrier integrity via depletion and -mediated phenylethylamine overproduction; and (3) vitamin B biosynthesis defects disrupting DNA repair and Th1/Th2 balance. Comparative profiling across HIV-associated malignancies-non-Hodgkin lymphoma, cervical cancer, hepatocellular carcinoma, and lung cancer-reveals conserved dysbiotic signatures: depletion of anti-inflammatory taxa (, ) and expansion of pro-inflammatory genera (, ).

View Article and Find Full Text PDF

Metabolomic and transcriptomic analyses unveil the accumulation of shikimic acid in the leaves of .

Front Plant Sci

August 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.

Introduction: Shikimic acid, as a critical precursor for oseltamivir synthesis in antiviral pharmaceuticals, faces escalating global demand. Although leaves have emerged as a promising natural source of shikimic acid owing to their exceptional content of this valuable compound and substantial biomass production capacity, the molecular mechanisms underlying its biosynthesis and downstream metabolic regulation in leaves remain largely unknown.

Methods: Here, the concentration of shikimic acid in 33 clones were assessed, and 1# (referred as HS) had the highest level.

View Article and Find Full Text PDF

Metabolic and bariatric surgery induces metabolic benefits beyond weight loss, including improved insulin sensitivity, type 2 diabetes (T2D) remission, and reduced inflammation. Recent metabolomics research highlights amino acid metabolites-branched-chain amino acids, aromatic amino acids, and tryptophan-derived compounds-as key biomarkers for predicting surgical outcomes. Elevated preoperative levels of isoleucine, phenylalanine, levodopa, and 3-hydroxyanthranilic acid are associated with improved glycemic control and T2D remission.

View Article and Find Full Text PDF

Purpose Of Review: This review examines how metabolic reprogramming drives fibrosis and immune dysregulation in systemic sclerosis (SSc), emphasizing the role of nutrient-sensing and energy pathways in disease progression.

Recent Findings: SSc is characterized by a shift from catabolic to anabolic metabolism, defined by reduced AMP-activated protein kinase (AMPK) and enhanced mechanistic target of rapamycin complex 1 (mTORC1) signaling. This promotes biosynthetic activity, with upregulated glycolysis supplying substrates for collagen production and supporting pro-inflammatory immune cell polarization.

View Article and Find Full Text PDF

Atherosclerosis (AS) is increasingly recognized as a disease influenced not only by lipid metabolism and inflammation but also by the gut microbiota and their bioactive metabolites. Isoquercitrin (ISO), a natural flavonoid with food-medicine homology, has shown promising antiatherosclerotic potential, yet its underlying mechanisms remain unclear. In this study, ISO administration significantly reduced plaque burden, improved lipid profiles, and restored gut microbial balance by enriching beneficial taxa, such as , , and .

View Article and Find Full Text PDF