98%
921
2 minutes
20
Neuroblastoma, the most common extracranial solid tumor in young children, arises from the sympathetic nervous system. Our understanding of neuroblastoma has been improved by the development of both genetically engineered and xenograft mouse models of the disease. Anatomical pathology is an essential component of the phenotyping of mouse models of cancer, characterizing the morphologic effects of genetic manipulation and drug treatment. The Th-MYCN model, the most widely used of several genetically engineered mouse models of neuroblastoma, was established by targeted expression of the human MYCN gene to murine neural crest cells under the control of the rat tyrosine hydroxylase promoter. Neuroblastoma development in Th-MYCN mice is preceded by neuroblast hyperplasia-the persistence and proliferation of neural crest-derived neuroblasts within the sympathetic autonomic ganglia. The neuroblastomas that subsequently develop morphologically resemble human neuroblastoma and carry chromosomal gains and losses in regions syntenic with those observed in human tumors. In this overview, we describe the essential pathologic features for investigators when assessing mouse models of neuroblastoma. We outline human neuroblastoma as the foundation for understanding the murine disease, followed by details of the murine sympathetic ganglia from which neuroblastoma arises. Sympathetic ganglia, both with and without neuroblast hyperplasia, are described. The macroscopic and microscopic features of murine neuroblastoma are explained, including assessment of xenografts and tumors following drug treatment. An approach to experimental design is also detailed. Increased understanding of the pathology of murine neuroblastoma should improve reproducibility and comparability of research findings and assist investigators working with mouse models of neuroblastoma. © 2021 Wiley Periodicals LLC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cpz1.310 | DOI Listing |
Sci Adv
September 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Acute sleep deprivation (SD) rapidly alleviates depression, addressing a critical gap in mood disorder treatment. Rapid eye movement SD (REM SD) modulates the excitability of vasoactive intestinal peptide (VIP) neurons, influencing the synaptic plasticity of pyramidal neurons. However, the precise mechanism remains undefined.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
(phosphatidylserine synthase 1) encodes an enzyme that facilitates production of phosphatidylserine (PS), which mediates a global immunosuppressive signal. Here, based on in vivo CRISPR screen, we identified PTDSS1 as a target to improve anti-PD-1 therapy. Depletion of in tumor cells increased expression of interferon-γ (IFN-γ)-regulated genes, including , , , and , even in the absence of IFN-γ stimulation in vitro.
View Article and Find Full Text PDFSci Adv
September 2025
Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
Regulatory T cells are essential for immune homeostasis. While CD4 T cells are well characterized, CD8 T cells remain less understood and are primarily observed in pathological or experimental contexts. Here, we identify a naturally occurring CD8 regulatory precursor T cell at the steady state, defined by a CD8HLA-DRCD27 phenotype and a transcriptome resembling CD4 T cells.
View Article and Find Full Text PDFSci Transl Med
September 2025
Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
Hepatocyte apoptosis is a key feature of metabolic dysfunction-associated steatohepatitis (MASH), but the fate of apoptotic hepatocytes in MASH is poorly understood. Here, we explore the hypotheses that clearance of dead hepatocytes by liver macrophages (efferocytosis) is impaired in MASH because of low expression of the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM4; gene ) by MASH liver macrophages, which then drives liver fibrosis in MASH. We show that apoptotic hepatocytes accumulate in human and experimental MASH, using mice fed the fructose-palmitate-cholesterol (FPC) diet or the high-fat, choline-deficient amino acid-defined (HF-CDAA) diet.
View Article and Find Full Text PDFSci Transl Med
September 2025
Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
Triple-negative breast cancers (TNBCs) lack predictive biomarkers to guide immunotherapy, especially during early-stage disease. To address this issue, we used single-cell RNA sequencing, bulk transcriptomics, and pathology assays on samples from 171 patients with early-stage TNBC receiving chemotherapy with or without immunotherapy. Our investigation identified an enriched subset of interferon (IFN)-induced CD8 T cells in early TNBC samples, which predict immunotherapy nonresponsiveness.
View Article and Find Full Text PDF