98%
921
2 minutes
20
Heterozygous POLE or POLD1 germline pathogenic variants (PVs) cause polymerase proofreading associated polyposis (PPAP), a constitutional polymerase proofreading deficiency that typically presents with colorectal adenomas and carcinomas in adulthood. Constitutional mismatch-repair deficiency (CMMRD), caused by germline bi-allelic PVs affecting one of four MMR genes, results in a high propensity for the hematological, brain, intestinal tract, and other malignancies in childhood. Nonmalignant clinical features, such as skin pigmentation alterations, are found in nearly all CMMRD patients and are important diagnostic markers. Here, we excluded CMMRD in three cancer patients with highly suspect clinical phenotypes but identified in each a constitutional heterozygous POLE PV. These, and two additional POLE PVs identified in published CMMRD-like patients, have not previously been reported as germline PVs despite all being well-known somatic mutations in hyper-mutated tumors. Together, these five cases show that specific POLE PVs may have a stronger "mutator" effect than known PPAP-associated POLE PVs and may cause a CMMRD-like phenotype distinct from PPAP. The common underlying mechanism, that is, a constitutional replication error repair defect, and a similar tumor spectrum provide a good rationale for monitoring these patients with a severe constitutional polymerase proofreading deficiency according to protocols proposed for CMMRD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.24299 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
HHMI and The Rockefeller University, New York, NY 10065.
Replication of cellular chromosomes requires a primase to generate short RNA primers to initiate genomic replication. While bacterial and archaeal primase generate short RNA primers, the eukaryotic primase, Polα-primase, contains both RNA primase and DNA polymerase (Pol) subunits that function together to form a >20 base hybrid RNA-DNA primer. Interestingly, the DNA Pol1 subunit of Polα lacks a 3'-5' proofreading exonuclease, contrary to the high-fidelity normally associated with DNA replication.
View Article and Find Full Text PDFRSC Chem Biol
September 2025
Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA.
The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.
View Article and Find Full Text PDFFront Immunol
August 2025
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States.
Immune checkpoint inhibitors have made remarkable impacts in treating various cancers, including colorectal cancer (CRC). However, CRC still remains a leading cause of cancer-related deaths. While microsatellite instability (MSI) CRC has shown positive responses to anti-PD-1 therapy, this subgroup represents a minority of all CRC patients.
View Article and Find Full Text PDFGenome Med
August 2025
Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
Background: Single base substitution (SBS) mutations, particularly C > T and T > C, are increased owing to unrepaired DNA replication errors in mismatch repair-deficient (MMRd) cancers. Excess CpG > TpG mutations have been reported in MMRd cancers defective in mismatch detection (dMutSα), but not in mismatch correction (dMutLα). Somatic CpG > TpG mutations conventionally result from unrepaired spontaneous deamination of 5'-methylcytosine throughout the cell cycle, causing T:G mismatches and signature SBS1.
View Article and Find Full Text PDFDNA Repair (Amst)
August 2025
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan. Electronic address:
Chain-terminating nucleoside analogs (CTNAs) are incorporated into genome during replication by replicative polymerase delta (Polδ) and epsilon (Polε), then inhibit DNA synthesis by preventing subsequent polymerization. The proofreading exonuclease activity of Polε removes the incorporated CTNAs, thereby contributing to cellular tolerance to these drugs. However, the contribution of Polδ's proofreading exonuclease activity has not been clarified, nor has the relationship between Polδ and Polε been well understood.
View Article and Find Full Text PDF