Integrated Analysis of Mutations, miRNA and mRNA Expression in Glioblastoma.

Int J Gen Med

College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People's Republic of China.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Glioblastoma multiforme (GBM) is a common, malignant brain tumor in adults, with a median survival of only 15-23 months. Organisms respond to disease stress through sophisticated mechanisms at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks responsible for occurrence, progression and recurrence of glioma have yet to be elucidated.

Methods: In this study, we sought to determine the cause of gliomas by developing an RNA-seq technique that analyzes mRNA and small RNA (sRNA) with the aim of discovering potential methods for precisely blocking key signaling pathways in occurrence, progression, and recurrence. The explication of mechanisms leading to GBM formation has become a feasible and promising new therapeutic method.

Results: GBM-associated genes were identified based on their expression during the disease stress response. Analysis of the inverse correlations between microRNAs (miRNAs) and target mRNAs revealed 43 mRNA-miRNA interactions during disease progression. BOC-SMO and BOC-RAS were found to promote the malignant progression of glioma. A total of 3088 differentially expressed genes were identified as involved in several biological processes, such as amino acid metabolism, protein transport associated with immune response, cell proliferation, and cell apoptosis. Fifteen miRNAs were also identified as being differentially expressed in GBM and control groups.

Conclusion: The results of this study provide an important foundation for understanding the pathogenesis of glioma and discovering new therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605868PMC
http://dx.doi.org/10.2147/IJGM.S336421DOI Listing

Publication Analysis

Top Keywords

disease stress
8
occurrence progression
8
progression recurrence
8
genes identified
8
differentially expressed
8
integrated analysis
4
analysis mutations
4
mutations mirna
4
mirna mrna
4
mrna expression
4

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Importance: Patients with inflammatory rheumatic diseases (IRDs) frequently experience psychological distress; however, access to psychological support remains limited.

Objective: To investigate the effectiveness of a digital psychological intervention for individuals with IRDs.

Design, Setting, And Participants: Participants aged 18 years or older were recruited across Germany between February 22 and June 4, 2024, if they had been diagnosed with rheumatoid arthritis, psoriatic arthritis, or systemic lupus erythematosus and reported psychological distress and reduced quality of life.

View Article and Find Full Text PDF

In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.

View Article and Find Full Text PDF