Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Perfect absorbers are of great importance in various applications such as photodetectors, optical sensors and optical modulators. Recently, perfect absorption metasurface based on monolayer graphene has attracted lots of research interest. In this paper, a graphene-lithium niobate (LN) perfect absorption metasurface is constructed, where graphene works as a thin absorptive layer as well as a conductive electrode. The proposed device achieves 99.99% absorption at 798.42 nm and 1.14 nm redshift of the absorption peak is realized at 300 V(from -150 V to 150 V) external bias voltage through the electro-optical effect of LN, which enables the proposed device work as a electrically tunable absorber in the visible and near infrared range. The switching ratio of reflected light R/R could reach -44.08 dB with an applied voltage tuning from -150 V to 0 V at 798.42 nm. Our work demonstrates the potential of LN integrated high-Q resonant metasurface in realizing electro-optic tunable nanophotonic devices in the visible and near infrared band. It will promote the research of graphene integrated optoelectronic devices as well as LN based tunable nanophotonic devices which have widespread applications such as modulators and optical phase arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.433890DOI Listing

Publication Analysis

Top Keywords

electrically tunable
8
tunable absorber
8
graphene integrated
8
resonant metasurface
8
perfect absorption
8
absorption metasurface
8
proposed device
8
visible infrared
8
tunable nanophotonic
8
nanophotonic devices
8

Similar Publications

Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed.

View Article and Find Full Text PDF

Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.

View Article and Find Full Text PDF

To address the growing demand for compact and high-performance microwave filters in modern communication systems, a mixed-mode bandpass filter is proposed in the article. A dual-layer substrate integrated waveguide resonator loaded with a capacitive patch (CP-DSIWR) is proposed and theoretically analyzed, with both patch modes and cavity modes existing. To construct the bandpass filter, two rows of metallic vias are designed in the CP-SIWR to enable coupling between the two types of the modes, with the structure being fed by microstrip line.

View Article and Find Full Text PDF

Ultralow-Cost Lacunary Metal-Oxo Framework Enables Efficient and Stable Organic Solar Cells.

Angew Chem Int Ed Engl

September 2025

Department of Material Science & Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong P.R. China.

Organic solar cells (OSCs) with p-i-n architecture usually exhibit decent efficiency due to the easily tunable energy levels of organic interfacial layers (ILs). However, their operational lifetime is limited by the morphological instability of organic ILs especially the electron-transporting layer (ETL) that shows strong self-aggregation tendency. Besides, organic ETLs are confronted with significant challenges including large batch-to-batch variations and high costs.

View Article and Find Full Text PDF

Giant and Tunable Optical Nonlinearity via Electrochemical Control of the Tellurium-Electrolyte Interface.

Nano Lett

September 2025

Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.

The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.

View Article and Find Full Text PDF