98%
921
2 minutes
20
Oral diseases are one of the most common pathologies affecting human health. These diseases are typically associated with dental plaque-biofilms, through either build-up of the biofilm or dysbiosis of the microbial community. Arginine can disrupt dental plaque-biofilms, and maintain plaque homeostasis, making it an ideal therapeutic to combat the development of oral disease. Despite our understanding of the actions of arginine towards dental plaque-biofilms, it is still unclear how or if arginine effects the mechanical integrity of the dental plaque-biofilm. Here we adapted a rotating-disc rheometry assay, a method used to quantify marine biofilm fouling, to study how arginine treatment of biofilms influences biofilm detachment from surfaces. We demonstrate that the assay is highly sensitive at quantifying the presence of biofilm and the detachment or rearrangement of the biofilm structure as a function of shear stress. We demonstrate that arginine treatment leads to earlier detachment of the biofilm, indicating that arginine treatment weakens the biofilm, making it more susceptible to removal by shear stresses. Finally, we demonstrate that the biofilm disrupting affect is specific to arginine, and not a general property of amino acids, as biofilms treated with either glycine or lysine had mechanical properties similar to untreated biofilms. Our results add to the understanding that arginine targets biofilms by multifaceted mechanisms, both metabolic and physical, further promoting the potential of arginine as an active compound in dentifrices to maintain oral health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602906 | PMC |
http://dx.doi.org/10.3389/fcimb.2021.784388 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Material Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang, Beijing 100029, China.
The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Department of Biotechnology, Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia.
Bacterial biofilms attach to various surfaces and represent an important clinical and public health problem, as they are highly recalcitrant and are often associated with chronic, nonhealing diseases and healthcare-associated infections. Antibacterial agents are often not sufficient for their elimination and have to be combined with mechanical removal. Mechanical forces can be generated by actuating nonspherical (anisotropic) magnetically responsive nanoparticles in a rotating magnetic field.
View Article and Find Full Text PDFJ Environ Manage
September 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta road, Xi'an, 710055, PR China. Electronic address:
In recent years, process-based models have gained prominence in investigating and quantifying the internal purification mechanisms of constructed wetlands (CWs). However, most existing process-based models focus primarily on short-term simulations of pollutant removal performance. To enable long-term simulations and predictions of the purification efficiency of CWs, this study developed a comprehensive process-based model that incorporates sub-models of hydraulics, reactive-transport, bacterial kinetics, plant dynamics, and media clogging.
View Article and Find Full Text PDFSci Rep
August 2025
Orthopaedics University Hospital Jena, Campus Eisenberg, Waldkliniken Eisenberg, Friedrich-Schiller-University, Klosterlausnitzer Straße 81, 07607, Eisenberg, Germany.
With the increasing number of total joint arthroplasties and the associated increase in periprosthetic infections, the further development of non-invasive examination methods to improve bacterial detection is becoming increasingly important. This is particularly important in the case of biofilm-forming bacteria, where false-negative results from joint puncture can lead to a delay in optimal therapy, as the number of planktonic bacteria in the punctate can be low. Extracorporeal shock wave therapy, originally used in the treatment of urolithiasis, has demonstrated promising energy-dependent biofilm-disrupting and even antimicrobial properties against Staphylococcus aureus.
View Article and Find Full Text PDFBiomaterials
August 2025
Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China. Electronic address:
The treatment of infectious bone defects requires simultaneous resolution of bacteria-associated antibiotic resistance, inflammatory microenvironment dysregulation, and impaired bone regeneration. Here, we developed an injectable, self-assembling designed gelatin micro-/nano-sphere system (GHMs@G1-N-A/T) that addresses the tripartite challenges of infectious bone defects through innovative material engineering: Antibacterial module featuring aptamer-conjugated gelatin nanospheres (AGN-Apt/Te) for MRSA-specific targeting, coupled with dual enzyme/pH-responsive release mechanisms (gelatinase-triggered nanosphere detachment and MgO-derived ROS generation); A self-assembling microsphere scaffold (GHMs) constructed through vanillin-mediated crosslinking and nano-hydroxyapatite (n-HA)/MgO incorporation, enabling sequential release of Mg/Ca; and A gelatinase-sensitive peptide (G-1) interface that dynamically links these components, ensuring microenvironment-responsive functionality. Results demonstrated that gelatinase-triggered AGN-Apt/Te nanospheres detachment enabled bacteria-specific antibiotic delivery, achieving greater than 95 % eradication of S.
View Article and Find Full Text PDF